粘合剂在反应复合材料中的作用:球形 B/Pb3O4 颗粒案例研究

IF 4.1 2区 材料科学 Q2 ENGINEERING, CHEMICAL
Fan Wang, Shanghao Du, Jiahui Yang, Zhihua Xue, Jiafei Li, Chongwei An, Jingyu Wang, Bidong Wu
{"title":"粘合剂在反应复合材料中的作用:球形 B/Pb3O4 颗粒案例研究","authors":"Fan Wang,&nbsp;Shanghao Du,&nbsp;Jiahui Yang,&nbsp;Zhihua Xue,&nbsp;Jiafei Li,&nbsp;Chongwei An,&nbsp;Jingyu Wang,&nbsp;Bidong Wu","doi":"10.1016/j.partic.2024.06.011","DOIUrl":null,"url":null,"abstract":"<div><p>The strategic selection of appropriate preparation methods and binder strategies is crucial for enhancing the particle and combustion performance of pyrotechnic delay compositions (PDCs). This study, utilizing droplet microfluidics technology (DMT) and micron-scale raw materials, prepared spherical B/Pb<sub>3</sub>O<sub>4</sub> composite particles with varying concentrations of fluorine rubber (F<sub>2604</sub>). The morphology, specific surface area, bulk density, flowability, friction sensitivity, thermal decomposition, and combustion performance of these microspheres were characterized. The results indicate that as the binder content increases, the particle size of the microspheres first decreases and then increases, the specific surface area decreases, and the bulk density increases, correlating with tighter binding of the reactant powders by the binder. Furthermore, tighter powder-to-powder binding results in a progressive decrease in the thermal decomposition peak temperature of the samples (from 404.2 °C to 346.4 °C). Additionally, increased binder content reduces the friction sensitivity and combustion rate of the samples, which is attributed to the energy absorption properties of the binder. Compared to the control group, the microsphere samples exhibit significantly enhanced bulk density, flowability, friction safety, and combustion delay precision, potentially improving the reliability of PDCs in ignition sequences.</p></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"93 ","pages":"Pages 170-179"},"PeriodicalIF":4.1000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of binders in reactive composites: A case study with spherical B/Pb3O4 particles\",\"authors\":\"Fan Wang,&nbsp;Shanghao Du,&nbsp;Jiahui Yang,&nbsp;Zhihua Xue,&nbsp;Jiafei Li,&nbsp;Chongwei An,&nbsp;Jingyu Wang,&nbsp;Bidong Wu\",\"doi\":\"10.1016/j.partic.2024.06.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The strategic selection of appropriate preparation methods and binder strategies is crucial for enhancing the particle and combustion performance of pyrotechnic delay compositions (PDCs). This study, utilizing droplet microfluidics technology (DMT) and micron-scale raw materials, prepared spherical B/Pb<sub>3</sub>O<sub>4</sub> composite particles with varying concentrations of fluorine rubber (F<sub>2604</sub>). The morphology, specific surface area, bulk density, flowability, friction sensitivity, thermal decomposition, and combustion performance of these microspheres were characterized. The results indicate that as the binder content increases, the particle size of the microspheres first decreases and then increases, the specific surface area decreases, and the bulk density increases, correlating with tighter binding of the reactant powders by the binder. Furthermore, tighter powder-to-powder binding results in a progressive decrease in the thermal decomposition peak temperature of the samples (from 404.2 °C to 346.4 °C). Additionally, increased binder content reduces the friction sensitivity and combustion rate of the samples, which is attributed to the energy absorption properties of the binder. Compared to the control group, the microsphere samples exhibit significantly enhanced bulk density, flowability, friction safety, and combustion delay precision, potentially improving the reliability of PDCs in ignition sequences.</p></div>\",\"PeriodicalId\":401,\"journal\":{\"name\":\"Particuology\",\"volume\":\"93 \",\"pages\":\"Pages 170-179\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Particuology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674200124001214\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200124001214","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

战略性地选择适当的制备方法和粘合剂策略对于提高烟火延时组合物(PDC)的颗粒和燃烧性能至关重要。本研究利用液滴微流控技术(DMT)和微米级原材料,制备了含有不同浓度氟橡胶(F)的球形 B/PbO 复合颗粒。对这些微球的形态、比表面积、体积密度、流动性、摩擦敏感性、热分解和燃烧性能进行了表征。结果表明,随着粘合剂含量的增加,微球的粒度先减小后增大,比表面积减小,体积密度增大,这与反应物粉末与粘合剂的结合更紧密有关。此外,粉末与粉末之间更紧密的结合导致样品的热分解峰值温度逐渐降低(从 404.2 °C 降至 346.4 °C)。此外,粘结剂含量的增加降低了样品的摩擦敏感性和燃烧率,这归因于粘结剂的能量吸收特性。与对照组相比,微球样品的体积密度、流动性、摩擦安全性和燃烧延迟精度都有显著提高,从而有可能改善 PDC 在点火序列中的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Role of binders in reactive composites: A case study with spherical B/Pb3O4 particles

Role of binders in reactive composites: A case study with spherical B/Pb3O4 particles

Role of binders in reactive composites: A case study with spherical B/Pb3O4 particles

The strategic selection of appropriate preparation methods and binder strategies is crucial for enhancing the particle and combustion performance of pyrotechnic delay compositions (PDCs). This study, utilizing droplet microfluidics technology (DMT) and micron-scale raw materials, prepared spherical B/Pb3O4 composite particles with varying concentrations of fluorine rubber (F2604). The morphology, specific surface area, bulk density, flowability, friction sensitivity, thermal decomposition, and combustion performance of these microspheres were characterized. The results indicate that as the binder content increases, the particle size of the microspheres first decreases and then increases, the specific surface area decreases, and the bulk density increases, correlating with tighter binding of the reactant powders by the binder. Furthermore, tighter powder-to-powder binding results in a progressive decrease in the thermal decomposition peak temperature of the samples (from 404.2 °C to 346.4 °C). Additionally, increased binder content reduces the friction sensitivity and combustion rate of the samples, which is attributed to the energy absorption properties of the binder. Compared to the control group, the microsphere samples exhibit significantly enhanced bulk density, flowability, friction safety, and combustion delay precision, potentially improving the reliability of PDCs in ignition sequences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Particuology
Particuology 工程技术-材料科学:综合
CiteScore
6.70
自引率
2.90%
发文量
1730
审稿时长
32 days
期刊介绍: The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles. Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors. Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology. Key topics concerning the creation and processing of particulates include: -Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales -Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes -Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc. -Experimental and computational methods for visualization and analysis of particulate system. These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信