{"title":"用于选择有效工具变量的聚合分层聚类法","authors":"Nicolas Apfel, Xiaoran Liang","doi":"10.1002/jae.3078","DOIUrl":null,"url":null,"abstract":"SummaryWe propose a procedure that combines hierarchical clustering with a test of overidentifying restrictions for selecting valid instrumental variables (IV) from a large set of IVs. Some of these IVs may be invalid in that they fail the exclusion restriction. We show that if the largest group of IVs is valid, our method achieves oracle properties. Unlike existing techniques, our work deals with multiple endogenous regressors. Simulation results suggest an advantageous performance of the method in various settings. The method is applied to estimating the effect of immigration on wages.","PeriodicalId":501243,"journal":{"name":"Journal of Applied Econometrics ","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Agglomerative hierarchical clustering for selecting valid instrumental variables\",\"authors\":\"Nicolas Apfel, Xiaoran Liang\",\"doi\":\"10.1002/jae.3078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SummaryWe propose a procedure that combines hierarchical clustering with a test of overidentifying restrictions for selecting valid instrumental variables (IV) from a large set of IVs. Some of these IVs may be invalid in that they fail the exclusion restriction. We show that if the largest group of IVs is valid, our method achieves oracle properties. Unlike existing techniques, our work deals with multiple endogenous regressors. Simulation results suggest an advantageous performance of the method in various settings. The method is applied to estimating the effect of immigration on wages.\",\"PeriodicalId\":501243,\"journal\":{\"name\":\"Journal of Applied Econometrics \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Econometrics \",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/jae.3078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Econometrics ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jae.3078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
摘要 我们提出了一种将分层聚类与过度识别限制检验相结合的程序,用于从大量的工具变量(IV)中选择有效的工具变量(IV)。其中一些 IV 可能是无效的,因为它们没有通过排除限制。我们的研究表明,如果最大的一组 IV 是有效的,那么我们的方法就能实现神谕特性。与现有技术不同,我们的工作涉及多个内生回归因子。仿真结果表明,该方法在各种情况下都具有优势。该方法被应用于估计移民对工资的影响。
Agglomerative hierarchical clustering for selecting valid instrumental variables
SummaryWe propose a procedure that combines hierarchical clustering with a test of overidentifying restrictions for selecting valid instrumental variables (IV) from a large set of IVs. Some of these IVs may be invalid in that they fail the exclusion restriction. We show that if the largest group of IVs is valid, our method achieves oracle properties. Unlike existing techniques, our work deals with multiple endogenous regressors. Simulation results suggest an advantageous performance of the method in various settings. The method is applied to estimating the effect of immigration on wages.