{"title":"粘弹性流体的电动蠕动输送:理论分析","authors":"Mahesh Kumar, Pranab Kumar Mondal","doi":"10.1007/s10404-024-02742-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we discuss the bioinspired peristaltic pumping mechanism of an elastic non-Newtonian fluid whose rheology is characterized by the Phan-Thien-Tanner model in a microfluidic configuration. We consider the effect of an electroosmotic body force originating from electrical double layer phenomena formed in the wall of the fluidic channel of finite length. The considered configuration is consistent with the natural contraction of the oesophagus wall that does not involve expansion beyond the stationary boundary. Employing lubrication theory and assuming the underlying flow to be in the creeping flow regime, we outline the transport equations pertaining to the chosen peristaltic set up. The transport equations are then solved using a well-established method consistent with perturbation technique. By depicting the pressure variation and wall shear stress graphically for a continuous wave train, we aptly discuss the time-averaged net throughput and flow developed at channel inlet of the chosen pathway and demonstrate the eventual consequences of these flow patterns for a window of viscoelastic and electrokinetic parameters. The outcomes obtained from this model establishes that the underlying flow owing to the peristaltic pumping mechanism strongly relies on the rheological parameter <span>\\(\\varepsilon W{e}^{2}\\)</span>. These inferences are expected to be of extensive importance in designing peristalsis pump, mimicking features of the physiological system, for achieving unidirectional flow of complex fluids with improved efficiency, frequently used in biochemical/biomicrofluidic applications.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 8","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrically actuated peristaltic transport of viscoelastic fluid: a theoretical analysis\",\"authors\":\"Mahesh Kumar, Pranab Kumar Mondal\",\"doi\":\"10.1007/s10404-024-02742-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, we discuss the bioinspired peristaltic pumping mechanism of an elastic non-Newtonian fluid whose rheology is characterized by the Phan-Thien-Tanner model in a microfluidic configuration. We consider the effect of an electroosmotic body force originating from electrical double layer phenomena formed in the wall of the fluidic channel of finite length. The considered configuration is consistent with the natural contraction of the oesophagus wall that does not involve expansion beyond the stationary boundary. Employing lubrication theory and assuming the underlying flow to be in the creeping flow regime, we outline the transport equations pertaining to the chosen peristaltic set up. The transport equations are then solved using a well-established method consistent with perturbation technique. By depicting the pressure variation and wall shear stress graphically for a continuous wave train, we aptly discuss the time-averaged net throughput and flow developed at channel inlet of the chosen pathway and demonstrate the eventual consequences of these flow patterns for a window of viscoelastic and electrokinetic parameters. The outcomes obtained from this model establishes that the underlying flow owing to the peristaltic pumping mechanism strongly relies on the rheological parameter <span>\\\\(\\\\varepsilon W{e}^{2}\\\\)</span>. These inferences are expected to be of extensive importance in designing peristalsis pump, mimicking features of the physiological system, for achieving unidirectional flow of complex fluids with improved efficiency, frequently used in biochemical/biomicrofluidic applications.</p></div>\",\"PeriodicalId\":706,\"journal\":{\"name\":\"Microfluidics and Nanofluidics\",\"volume\":\"28 8\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microfluidics and Nanofluidics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10404-024-02742-y\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10404-024-02742-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Electrically actuated peristaltic transport of viscoelastic fluid: a theoretical analysis
In this article, we discuss the bioinspired peristaltic pumping mechanism of an elastic non-Newtonian fluid whose rheology is characterized by the Phan-Thien-Tanner model in a microfluidic configuration. We consider the effect of an electroosmotic body force originating from electrical double layer phenomena formed in the wall of the fluidic channel of finite length. The considered configuration is consistent with the natural contraction of the oesophagus wall that does not involve expansion beyond the stationary boundary. Employing lubrication theory and assuming the underlying flow to be in the creeping flow regime, we outline the transport equations pertaining to the chosen peristaltic set up. The transport equations are then solved using a well-established method consistent with perturbation technique. By depicting the pressure variation and wall shear stress graphically for a continuous wave train, we aptly discuss the time-averaged net throughput and flow developed at channel inlet of the chosen pathway and demonstrate the eventual consequences of these flow patterns for a window of viscoelastic and electrokinetic parameters. The outcomes obtained from this model establishes that the underlying flow owing to the peristaltic pumping mechanism strongly relies on the rheological parameter \(\varepsilon W{e}^{2}\). These inferences are expected to be of extensive importance in designing peristalsis pump, mimicking features of the physiological system, for achieving unidirectional flow of complex fluids with improved efficiency, frequently used in biochemical/biomicrofluidic applications.
期刊介绍:
Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include:
1.000 Fundamental principles of micro- and nanoscale phenomena like,
flow, mass transport and reactions
3.000 Theoretical models and numerical simulation with experimental and/or analytical proof
4.000 Novel measurement & characterization technologies
5.000 Devices (actuators and sensors)
6.000 New unit-operations for dedicated microfluidic platforms
7.000 Lab-on-a-Chip applications
8.000 Microfabrication technologies and materials
Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).