不同冷却条件下加镁铝硅的热曲线和微观结构分析

IF 2.6 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
M. F. Mohamad Tajudin, A. H. Ahmad, J. Alias, N. A. Abd Razak, S. Naher
{"title":"不同冷却条件下加镁铝硅的热曲线和微观结构分析","authors":"M. F. Mohamad Tajudin, A. H. Ahmad, J. Alias, N. A. Abd Razak, S. Naher","doi":"10.1007/s40962-024-01388-4","DOIUrl":null,"url":null,"abstract":"<p>Thermal analysis is an effective approach for studying the characteristics of materials under different temperature situations. The study implemented cooling curve analysis (CCA), complemented by computational methods for precisely evaluating the temperature variation of the molten alloy by employing two thermocouples. An aluminium alloy with 1 wt.% Mg addition was melted in graphite crucible and subjected to various cooling conditions, which included normal, slow, fast, and fastest cooling rate conditions. Normal cooling condition (A) was achieved when the crucible was allowed to cool down to room temperature. Meanwhile, the slow cooling condition (B) was achieved when the crucible was allowed to cool within the Kaowool insulator chamber. In addition, the fast (C) and fastest (D) cooling conditions were attained when the forced airflow was directed at the crucible at minimum and maximum speed, respectively. The temperature data were collected via K-type thermocouples connected to a Ni 9129 data acquisition system and DasyLab software. Cooling curves, cooling curves with baselines, dendritic coherency points, and solid fractions were then recorded using OriginPro 2019b software. The liquidus, eutectic, and solidus temperatures were determined. The microstructure of the alloy sample was characterised by optical microscopy (OM), scanning electron microscopy (SEM), combined with energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) analysis. The results show that the high cooling rates produced smaller and more globular grain structures. The highest cooling rate condition produced smaller and globular microstructure formation at 944 µm<sup>2</sup> and a circularity of 0.61, respectively. Meanwhile, the slow cooling condition produced the largest grain size at 1668 µm<sup>2</sup> and a circularity of 0.46. The results show that higher cooling rates result in a smaller and more spherical grain structure than other cooling conditions. This underlines the significant influence of the cooling rate on the development of the microstructure during the solidification process. This comprehensive thermal analysis study has shed light on the significant influence of Mg addition and different cooling conditions on the Al-Si alloy's thermal properties and microstructure formation. The results contribute to understanding alloy solidification and may have practical implications for materials engineering and manufacturing.</p>","PeriodicalId":14231,"journal":{"name":"International Journal of Metalcasting","volume":"19 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal Profile and Microstructure Analysis of Al-Si with the Magnesium Addition under Different Cooling Conditions\",\"authors\":\"M. F. Mohamad Tajudin, A. H. Ahmad, J. Alias, N. A. Abd Razak, S. Naher\",\"doi\":\"10.1007/s40962-024-01388-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Thermal analysis is an effective approach for studying the characteristics of materials under different temperature situations. The study implemented cooling curve analysis (CCA), complemented by computational methods for precisely evaluating the temperature variation of the molten alloy by employing two thermocouples. An aluminium alloy with 1 wt.% Mg addition was melted in graphite crucible and subjected to various cooling conditions, which included normal, slow, fast, and fastest cooling rate conditions. Normal cooling condition (A) was achieved when the crucible was allowed to cool down to room temperature. Meanwhile, the slow cooling condition (B) was achieved when the crucible was allowed to cool within the Kaowool insulator chamber. In addition, the fast (C) and fastest (D) cooling conditions were attained when the forced airflow was directed at the crucible at minimum and maximum speed, respectively. The temperature data were collected via K-type thermocouples connected to a Ni 9129 data acquisition system and DasyLab software. Cooling curves, cooling curves with baselines, dendritic coherency points, and solid fractions were then recorded using OriginPro 2019b software. The liquidus, eutectic, and solidus temperatures were determined. The microstructure of the alloy sample was characterised by optical microscopy (OM), scanning electron microscopy (SEM), combined with energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) analysis. The results show that the high cooling rates produced smaller and more globular grain structures. The highest cooling rate condition produced smaller and globular microstructure formation at 944 µm<sup>2</sup> and a circularity of 0.61, respectively. Meanwhile, the slow cooling condition produced the largest grain size at 1668 µm<sup>2</sup> and a circularity of 0.46. The results show that higher cooling rates result in a smaller and more spherical grain structure than other cooling conditions. This underlines the significant influence of the cooling rate on the development of the microstructure during the solidification process. This comprehensive thermal analysis study has shed light on the significant influence of Mg addition and different cooling conditions on the Al-Si alloy's thermal properties and microstructure formation. The results contribute to understanding alloy solidification and may have practical implications for materials engineering and manufacturing.</p>\",\"PeriodicalId\":14231,\"journal\":{\"name\":\"International Journal of Metalcasting\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Metalcasting\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s40962-024-01388-4\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Metalcasting","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40962-024-01388-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

热分析是研究不同温度条件下材料特性的有效方法。本研究采用了冷却曲线分析法(CCA),并辅以计算方法,通过使用两个热电偶精确评估熔融合金的温度变化。在石墨坩埚中熔化了添加 1 wt.% Mg 的铝合金,并将其置于各种冷却条件下,包括正常、慢速、快速和最快冷却速率条件。正常冷却条件(A)是让坩埚冷却到室温。同时,在慢速冷却条件(B)下,让坩埚在考伍尔绝缘体室内冷却。此外,当强制气流分别以最小和最大速度冲向坩埚时,可达到快速(C)和最快(D)冷却条件。温度数据通过连接到 Ni 9129 数据采集系统和 DasyLab 软件的 K 型热电偶采集。然后使用 OriginPro 2019b 软件记录冷却曲线、带基线的冷却曲线、树枝状相干点和固体分数。确定了液相温度、共晶温度和固相温度。通过光学显微镜(OM)、扫描电子显微镜(SEM),结合能量色散 X 射线光谱(EDX)和 X 射线衍射(XRD)分析,对合金样品的微观结构进行了表征。结果表明,高冷却速率产生的晶粒结构更小、更球状。最高冷却速率条件下形成的微观结构更小,呈球状,面积为 944 µm2,圆度为 0.61。同时,慢速冷却条件下产生的晶粒尺寸最大,为 1668 µm2,圆度为 0.46。结果表明,与其他冷却条件相比,较高的冷却速率会产生更小和更球形的晶粒结构。这凸显了冷却速率对凝固过程中微观结构发展的重要影响。这项全面的热分析研究揭示了添加镁和不同冷却条件对铝硅合金热性能和微观结构形成的重要影响。研究结果有助于理解合金凝固,并可能对材料工程和制造产生实际影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Thermal Profile and Microstructure Analysis of Al-Si with the Magnesium Addition under Different Cooling Conditions

Thermal Profile and Microstructure Analysis of Al-Si with the Magnesium Addition under Different Cooling Conditions

Thermal analysis is an effective approach for studying the characteristics of materials under different temperature situations. The study implemented cooling curve analysis (CCA), complemented by computational methods for precisely evaluating the temperature variation of the molten alloy by employing two thermocouples. An aluminium alloy with 1 wt.% Mg addition was melted in graphite crucible and subjected to various cooling conditions, which included normal, slow, fast, and fastest cooling rate conditions. Normal cooling condition (A) was achieved when the crucible was allowed to cool down to room temperature. Meanwhile, the slow cooling condition (B) was achieved when the crucible was allowed to cool within the Kaowool insulator chamber. In addition, the fast (C) and fastest (D) cooling conditions were attained when the forced airflow was directed at the crucible at minimum and maximum speed, respectively. The temperature data were collected via K-type thermocouples connected to a Ni 9129 data acquisition system and DasyLab software. Cooling curves, cooling curves with baselines, dendritic coherency points, and solid fractions were then recorded using OriginPro 2019b software. The liquidus, eutectic, and solidus temperatures were determined. The microstructure of the alloy sample was characterised by optical microscopy (OM), scanning electron microscopy (SEM), combined with energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) analysis. The results show that the high cooling rates produced smaller and more globular grain structures. The highest cooling rate condition produced smaller and globular microstructure formation at 944 µm2 and a circularity of 0.61, respectively. Meanwhile, the slow cooling condition produced the largest grain size at 1668 µm2 and a circularity of 0.46. The results show that higher cooling rates result in a smaller and more spherical grain structure than other cooling conditions. This underlines the significant influence of the cooling rate on the development of the microstructure during the solidification process. This comprehensive thermal analysis study has shed light on the significant influence of Mg addition and different cooling conditions on the Al-Si alloy's thermal properties and microstructure formation. The results contribute to understanding alloy solidification and may have practical implications for materials engineering and manufacturing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Metalcasting
International Journal of Metalcasting 工程技术-冶金工程
CiteScore
4.20
自引率
42.30%
发文量
174
审稿时长
>12 weeks
期刊介绍: The International Journal of Metalcasting is dedicated to leading the transfer of research and technology for the global metalcasting industry. The quarterly publication keeps the latest developments in metalcasting research and technology in front of the scientific leaders in our global industry throughout the year. All papers published in the the journal are approved after a rigorous peer review process. The editorial peer review board represents three international metalcasting groups: academia (metalcasting professors), science and research (personnel from national labs, research and scientific institutions), and industry (leading technical personnel from metalcasting facilities).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信