皮克林乳液:作为替代表面活性剂的微凝胶

IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL
{"title":"皮克林乳液:作为替代表面活性剂的微凝胶","authors":"","doi":"10.1016/j.cocis.2024.101827","DOIUrl":null,"url":null,"abstract":"<div><p>Microgels stand out as compelling alternatives to traditional emulsifiers in Pickering emulsions, owing to their unique deformability and responsiveness, distinguishing them from rigid particles and conventional surfactants. In this review, we provide an overview of recent advancements and breakthroughs in microgel synthesis and the stabilization of Pickering emulsions using microgels. Additionally, we discuss the underlying stabilization mechanisms of microgel-stabilized emulsions, elucidating the influencing factors such as microgel properties, environmental conditions, and interfacial structures that significantly impact emulsion stability. Given these recent achievements, we summarize and highlight the promising applications associated with diverse Pickering emulsion systems stabilized by tailored microgels, including interfacial catalysis, functional foods, vaccine adjuvants, stimuli-responsive colloidosomes, and droplet manipulation. Conclusively, we identify the existing research gaps in microgel studies and propose future directions, emphasizing the need for the rational design of microgels, comprehensive mechanism studies of microgel-stabilized emulsions, and the formation of next-generation Pickering emulsions.</p></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pickering emulsions: Microgels as alternative surfactants\",\"authors\":\"\",\"doi\":\"10.1016/j.cocis.2024.101827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Microgels stand out as compelling alternatives to traditional emulsifiers in Pickering emulsions, owing to their unique deformability and responsiveness, distinguishing them from rigid particles and conventional surfactants. In this review, we provide an overview of recent advancements and breakthroughs in microgel synthesis and the stabilization of Pickering emulsions using microgels. Additionally, we discuss the underlying stabilization mechanisms of microgel-stabilized emulsions, elucidating the influencing factors such as microgel properties, environmental conditions, and interfacial structures that significantly impact emulsion stability. Given these recent achievements, we summarize and highlight the promising applications associated with diverse Pickering emulsion systems stabilized by tailored microgels, including interfacial catalysis, functional foods, vaccine adjuvants, stimuli-responsive colloidosomes, and droplet manipulation. Conclusively, we identify the existing research gaps in microgel studies and propose future directions, emphasizing the need for the rational design of microgels, comprehensive mechanism studies of microgel-stabilized emulsions, and the formation of next-generation Pickering emulsions.</p></div>\",\"PeriodicalId\":293,\"journal\":{\"name\":\"Current Opinion in Colloid & Interface Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Colloid & Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359029424000451\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Colloid & Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359029424000451","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

微凝胶具有独特的可变形性和响应性,有别于刚性颗粒和传统表面活性剂,因此在皮克林乳液中是传统乳化剂的理想替代品。在本综述中,我们将概述微凝胶合成和使用微凝胶稳定皮克林乳液方面的最新进展和突破。此外,我们还讨论了微凝胶稳定乳液的基本稳定机制,阐明了微凝胶特性、环境条件和界面结构等对乳液稳定性有重大影响的因素。鉴于这些最新成果,我们总结并强调了与定制微凝胶稳定的各种皮克林乳液体系相关的前景广阔的应用,包括界面催化、功能食品、疫苗佐剂、刺激响应胶体和液滴操纵。最后,我们指出了微凝胶研究中现有的研究空白,并提出了未来的研究方向,强调了合理设计微凝胶、全面研究微凝胶稳定乳液的机理以及形成下一代皮克林乳液的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Pickering emulsions: Microgels as alternative surfactants

Pickering emulsions: Microgels as alternative surfactants

Pickering emulsions: Microgels as alternative surfactants

Microgels stand out as compelling alternatives to traditional emulsifiers in Pickering emulsions, owing to their unique deformability and responsiveness, distinguishing them from rigid particles and conventional surfactants. In this review, we provide an overview of recent advancements and breakthroughs in microgel synthesis and the stabilization of Pickering emulsions using microgels. Additionally, we discuss the underlying stabilization mechanisms of microgel-stabilized emulsions, elucidating the influencing factors such as microgel properties, environmental conditions, and interfacial structures that significantly impact emulsion stability. Given these recent achievements, we summarize and highlight the promising applications associated with diverse Pickering emulsion systems stabilized by tailored microgels, including interfacial catalysis, functional foods, vaccine adjuvants, stimuli-responsive colloidosomes, and droplet manipulation. Conclusively, we identify the existing research gaps in microgel studies and propose future directions, emphasizing the need for the rational design of microgels, comprehensive mechanism studies of microgel-stabilized emulsions, and the formation of next-generation Pickering emulsions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.50
自引率
1.10%
发文量
74
审稿时长
11.3 weeks
期刊介绍: Current Opinion in Colloid and Interface Science (COCIS) is an international journal that focuses on the molecular and nanoscopic aspects of colloidal systems and interfaces in various scientific and technological fields. These include materials science, biologically-relevant systems, energy and environmental technologies, and industrial applications. Unlike primary journals, COCIS primarily serves as a guide for researchers, helping them navigate through the vast landscape of recently published literature. It critically analyzes the state of the art, identifies bottlenecks and unsolved issues, and proposes future developments. Moreover, COCIS emphasizes certain areas and papers that are considered particularly interesting and significant by the Editors and Section Editors. Its goal is to provide valuable insights and updates to the research community in these specialized areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信