通货膨胀标量单环引力效应的替代计算

IF 5.4 1区 物理与天体物理 Q1 Physics and Astronomy
S. P. Miao, N. C. Tsamis, R. P. Woodard
{"title":"通货膨胀标量单环引力效应的替代计算","authors":"S. P. Miao, N. C. Tsamis, R. P. Woodard","doi":"10.1007/jhep07(2024)099","DOIUrl":null,"url":null,"abstract":"<p>We present a new computation of the renormalized graviton self-energy induced by a loop of massless, minimally coupled scalars on de Sitter background. Our result takes account of the need to include a finite renormalization of the cosmological constant, which was not included in the first analysis. We also avoid preconceptions concerning structure functions and instead express the result as a linear combination of 21 tensor differential operators. By using our result to quantum-correct the linearized effective field equation we derive logarithmic corrections to both the electric components of the Weyl tensor for gravitational radiation and to the two potentials which quantify the gravitational response to a static point mass.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alternate computation of gravitational effects from a single loop of inflationary scalars\",\"authors\":\"S. P. Miao, N. C. Tsamis, R. P. Woodard\",\"doi\":\"10.1007/jhep07(2024)099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a new computation of the renormalized graviton self-energy induced by a loop of massless, minimally coupled scalars on de Sitter background. Our result takes account of the need to include a finite renormalization of the cosmological constant, which was not included in the first analysis. We also avoid preconceptions concerning structure functions and instead express the result as a linear combination of 21 tensor differential operators. By using our result to quantum-correct the linearized effective field equation we derive logarithmic corrections to both the electric components of the Weyl tensor for gravitational radiation and to the two potentials which quantify the gravitational response to a static point mass.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/jhep07(2024)099\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/jhep07(2024)099","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了对德西特背景上无质量、微耦合标量环引起的重正化引力子自能的新计算。我们的结果考虑到了对宇宙常数进行有限重正化的需要,而这在第一次分析中并没有包括在内。我们还避免了有关结构函数的先入之见,而是将结果表达为 21 个张量微分算子的线性组合。通过利用我们的结果对线性化有效场方程进行量子修正,我们得出了引力辐射韦尔张量的电分量和量化静态点质量引力响应的两个势的对数修正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Alternate computation of gravitational effects from a single loop of inflationary scalars

We present a new computation of the renormalized graviton self-energy induced by a loop of massless, minimally coupled scalars on de Sitter background. Our result takes account of the need to include a finite renormalization of the cosmological constant, which was not included in the first analysis. We also avoid preconceptions concerning structure functions and instead express the result as a linear combination of 21 tensor differential operators. By using our result to quantum-correct the linearized effective field equation we derive logarithmic corrections to both the electric components of the Weyl tensor for gravitational radiation and to the two potentials which quantify the gravitational response to a static point mass.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics 物理-物理:粒子与场物理
CiteScore
10.30
自引率
46.30%
发文量
2107
审稿时长
1.5 months
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信