用于平面空穴传输的低温二氧化钛电子传输层 无材料碳电极-CsFA 型过氧化物太阳能电池

IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Woraprom Passatorntaschakorn, Warunee Khampa, Wongsathon Musikpan, Athipong Ngamjarurojana, Atcharawon Gardchareon, Pipat Ruankham, Chawalit Bhoomanee, Duangmanee Wongratanaphisan
{"title":"用于平面空穴传输的低温二氧化钛电子传输层 无材料碳电极-CsFA 型过氧化物太阳能电池","authors":"Woraprom Passatorntaschakorn, Warunee Khampa, Wongsathon Musikpan, Athipong Ngamjarurojana, Atcharawon Gardchareon, Pipat Ruankham, Chawalit Bhoomanee, Duangmanee Wongratanaphisan","doi":"10.1002/pssa.202400470","DOIUrl":null,"url":null,"abstract":"Carbon electrode‐based perovskite solar cells (C‐PSCs) without a hole transport material (HTM) are cost‐effective and exhibit impressive long‐term stability. The electron transporting layer (ETL) plays a crucial role in planar CsFA‐based HTM‐free C‐PSCs, serving as both an electron transporter and a hole barrier. Herein, the role of low‐TiO<jats:sub>2</jats:sub> morphology and thickness on the performance of CsFA‐based HTM‐free C‐PSCs are addressed. Herein, the devices are fabricated with a simple structure fluorine‐doped tin oxide /TiO<jats:sub>2</jats:sub> nanoparticles (TiO<jats:sub>2</jats:sub> NPs)/Cs<jats:sub>0.17</jats:sub>FA<jats:sub>0.83</jats:sub>Pb(I<jats:sub>0.83</jats:sub>Br<jats:sub>0.17</jats:sub>)<jats:sub>3</jats:sub>/carbon, using low‐temperature processes (≤150 °C) under ambient air conditions. By optimizing TiO<jats:sub>2</jats:sub> NP layer thickness via spin‐coating speed adjustments, the ETL's coverage and compactness are improved, enhancing the perovskite film's quality, crystallinity, and grain size. An optimal TiO<jats:sub>2</jats:sub> ETL at 1500 rpm yields 10.80% efficiency and demonstrates exceptional stability, maintaining 80% efficiency over 120 days in an air environment without encapsulation. The enhancement in device performance is attributed to improved surface properties of the TiO<jats:sub>2</jats:sub> NPs ETL, effectively reducing interfacial charge recombination. This straightforwardly supports the development of sustainable, commercial‐ready CsFA HTM‐free C‐PSCs.","PeriodicalId":20074,"journal":{"name":"Physica Status Solidi A-applications and Materials Science","volume":"18 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low‐Temperature TiO2 Electron Transporting Layer for Planar Hole Transport Material‐Free Carbon Electrode‐CsFA‐Based Perovskite Solar Cells\",\"authors\":\"Woraprom Passatorntaschakorn, Warunee Khampa, Wongsathon Musikpan, Athipong Ngamjarurojana, Atcharawon Gardchareon, Pipat Ruankham, Chawalit Bhoomanee, Duangmanee Wongratanaphisan\",\"doi\":\"10.1002/pssa.202400470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carbon electrode‐based perovskite solar cells (C‐PSCs) without a hole transport material (HTM) are cost‐effective and exhibit impressive long‐term stability. The electron transporting layer (ETL) plays a crucial role in planar CsFA‐based HTM‐free C‐PSCs, serving as both an electron transporter and a hole barrier. Herein, the role of low‐TiO<jats:sub>2</jats:sub> morphology and thickness on the performance of CsFA‐based HTM‐free C‐PSCs are addressed. Herein, the devices are fabricated with a simple structure fluorine‐doped tin oxide /TiO<jats:sub>2</jats:sub> nanoparticles (TiO<jats:sub>2</jats:sub> NPs)/Cs<jats:sub>0.17</jats:sub>FA<jats:sub>0.83</jats:sub>Pb(I<jats:sub>0.83</jats:sub>Br<jats:sub>0.17</jats:sub>)<jats:sub>3</jats:sub>/carbon, using low‐temperature processes (≤150 °C) under ambient air conditions. By optimizing TiO<jats:sub>2</jats:sub> NP layer thickness via spin‐coating speed adjustments, the ETL's coverage and compactness are improved, enhancing the perovskite film's quality, crystallinity, and grain size. An optimal TiO<jats:sub>2</jats:sub> ETL at 1500 rpm yields 10.80% efficiency and demonstrates exceptional stability, maintaining 80% efficiency over 120 days in an air environment without encapsulation. The enhancement in device performance is attributed to improved surface properties of the TiO<jats:sub>2</jats:sub> NPs ETL, effectively reducing interfacial charge recombination. This straightforwardly supports the development of sustainable, commercial‐ready CsFA HTM‐free C‐PSCs.\",\"PeriodicalId\":20074,\"journal\":{\"name\":\"Physica Status Solidi A-applications and Materials Science\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Status Solidi A-applications and Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/pssa.202400470\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi A-applications and Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/pssa.202400470","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

不含空穴传输材料(HTM)的碳电极型过氧化物太阳能电池(C-PSCs)具有很高的成本效益和长期稳定性。电子传输层(ETL)在平面CsFA基无空穴传输材料的C-PSC中起着至关重要的作用,既是电子传输层,又是空穴阻挡层。本文探讨了低二氧化钛形貌和厚度对基于 CsFA 的无 HTM C-PSC 性能的影响。本文在环境空气条件下采用低温工艺(≤150 °C),用结构简单的掺氟氧化锡/TiO2 纳米粒子(TiO2 NPs)/Cs0.17FA0.83Pb(I0.83Br0.17)3/碳制造了器件。通过调整旋涂速度优化 TiO2 NP 层厚度,提高了 ETL 的覆盖率和致密性,从而提高了过氧化物薄膜的质量、结晶度和晶粒尺寸。在 1500 rpm 转速下的最佳 TiO2 ETL 可产生 10.80% 的效率,并表现出卓越的稳定性,在无封装的空气环境中可在 120 天内保持 80% 的效率。器件性能的提高归功于 TiO2 NPs ETL 表面特性的改善,从而有效减少了界面电荷重组。这直接支持了可持续的、可商业化的不含 CsFA HTM 的 C-PSC 的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low‐Temperature TiO2 Electron Transporting Layer for Planar Hole Transport Material‐Free Carbon Electrode‐CsFA‐Based Perovskite Solar Cells
Carbon electrode‐based perovskite solar cells (C‐PSCs) without a hole transport material (HTM) are cost‐effective and exhibit impressive long‐term stability. The electron transporting layer (ETL) plays a crucial role in planar CsFA‐based HTM‐free C‐PSCs, serving as both an electron transporter and a hole barrier. Herein, the role of low‐TiO2 morphology and thickness on the performance of CsFA‐based HTM‐free C‐PSCs are addressed. Herein, the devices are fabricated with a simple structure fluorine‐doped tin oxide /TiO2 nanoparticles (TiO2 NPs)/Cs0.17FA0.83Pb(I0.83Br0.17)3/carbon, using low‐temperature processes (≤150 °C) under ambient air conditions. By optimizing TiO2 NP layer thickness via spin‐coating speed adjustments, the ETL's coverage and compactness are improved, enhancing the perovskite film's quality, crystallinity, and grain size. An optimal TiO2 ETL at 1500 rpm yields 10.80% efficiency and demonstrates exceptional stability, maintaining 80% efficiency over 120 days in an air environment without encapsulation. The enhancement in device performance is attributed to improved surface properties of the TiO2 NPs ETL, effectively reducing interfacial charge recombination. This straightforwardly supports the development of sustainable, commercial‐ready CsFA HTM‐free C‐PSCs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
5.00%
发文量
393
审稿时长
2 months
期刊介绍: The physica status solidi (pss) journal group is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Among the largest and most established international publications, the pss journals publish reviews, letters and original articles, as regular content as well as in special issues and topical sections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信