{"title":"用于平面空穴传输的低温二氧化钛电子传输层 无材料碳电极-CsFA 型过氧化物太阳能电池","authors":"Woraprom Passatorntaschakorn, Warunee Khampa, Wongsathon Musikpan, Athipong Ngamjarurojana, Atcharawon Gardchareon, Pipat Ruankham, Chawalit Bhoomanee, Duangmanee Wongratanaphisan","doi":"10.1002/pssa.202400470","DOIUrl":null,"url":null,"abstract":"Carbon electrode‐based perovskite solar cells (C‐PSCs) without a hole transport material (HTM) are cost‐effective and exhibit impressive long‐term stability. The electron transporting layer (ETL) plays a crucial role in planar CsFA‐based HTM‐free C‐PSCs, serving as both an electron transporter and a hole barrier. Herein, the role of low‐TiO<jats:sub>2</jats:sub> morphology and thickness on the performance of CsFA‐based HTM‐free C‐PSCs are addressed. Herein, the devices are fabricated with a simple structure fluorine‐doped tin oxide /TiO<jats:sub>2</jats:sub> nanoparticles (TiO<jats:sub>2</jats:sub> NPs)/Cs<jats:sub>0.17</jats:sub>FA<jats:sub>0.83</jats:sub>Pb(I<jats:sub>0.83</jats:sub>Br<jats:sub>0.17</jats:sub>)<jats:sub>3</jats:sub>/carbon, using low‐temperature processes (≤150 °C) under ambient air conditions. By optimizing TiO<jats:sub>2</jats:sub> NP layer thickness via spin‐coating speed adjustments, the ETL's coverage and compactness are improved, enhancing the perovskite film's quality, crystallinity, and grain size. An optimal TiO<jats:sub>2</jats:sub> ETL at 1500 rpm yields 10.80% efficiency and demonstrates exceptional stability, maintaining 80% efficiency over 120 days in an air environment without encapsulation. The enhancement in device performance is attributed to improved surface properties of the TiO<jats:sub>2</jats:sub> NPs ETL, effectively reducing interfacial charge recombination. This straightforwardly supports the development of sustainable, commercial‐ready CsFA HTM‐free C‐PSCs.","PeriodicalId":20074,"journal":{"name":"Physica Status Solidi A-applications and Materials Science","volume":"18 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low‐Temperature TiO2 Electron Transporting Layer for Planar Hole Transport Material‐Free Carbon Electrode‐CsFA‐Based Perovskite Solar Cells\",\"authors\":\"Woraprom Passatorntaschakorn, Warunee Khampa, Wongsathon Musikpan, Athipong Ngamjarurojana, Atcharawon Gardchareon, Pipat Ruankham, Chawalit Bhoomanee, Duangmanee Wongratanaphisan\",\"doi\":\"10.1002/pssa.202400470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carbon electrode‐based perovskite solar cells (C‐PSCs) without a hole transport material (HTM) are cost‐effective and exhibit impressive long‐term stability. The electron transporting layer (ETL) plays a crucial role in planar CsFA‐based HTM‐free C‐PSCs, serving as both an electron transporter and a hole barrier. Herein, the role of low‐TiO<jats:sub>2</jats:sub> morphology and thickness on the performance of CsFA‐based HTM‐free C‐PSCs are addressed. Herein, the devices are fabricated with a simple structure fluorine‐doped tin oxide /TiO<jats:sub>2</jats:sub> nanoparticles (TiO<jats:sub>2</jats:sub> NPs)/Cs<jats:sub>0.17</jats:sub>FA<jats:sub>0.83</jats:sub>Pb(I<jats:sub>0.83</jats:sub>Br<jats:sub>0.17</jats:sub>)<jats:sub>3</jats:sub>/carbon, using low‐temperature processes (≤150 °C) under ambient air conditions. By optimizing TiO<jats:sub>2</jats:sub> NP layer thickness via spin‐coating speed adjustments, the ETL's coverage and compactness are improved, enhancing the perovskite film's quality, crystallinity, and grain size. An optimal TiO<jats:sub>2</jats:sub> ETL at 1500 rpm yields 10.80% efficiency and demonstrates exceptional stability, maintaining 80% efficiency over 120 days in an air environment without encapsulation. The enhancement in device performance is attributed to improved surface properties of the TiO<jats:sub>2</jats:sub> NPs ETL, effectively reducing interfacial charge recombination. This straightforwardly supports the development of sustainable, commercial‐ready CsFA HTM‐free C‐PSCs.\",\"PeriodicalId\":20074,\"journal\":{\"name\":\"Physica Status Solidi A-applications and Materials Science\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Status Solidi A-applications and Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/pssa.202400470\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi A-applications and Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/pssa.202400470","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Low‐Temperature TiO2 Electron Transporting Layer for Planar Hole Transport Material‐Free Carbon Electrode‐CsFA‐Based Perovskite Solar Cells
Carbon electrode‐based perovskite solar cells (C‐PSCs) without a hole transport material (HTM) are cost‐effective and exhibit impressive long‐term stability. The electron transporting layer (ETL) plays a crucial role in planar CsFA‐based HTM‐free C‐PSCs, serving as both an electron transporter and a hole barrier. Herein, the role of low‐TiO2 morphology and thickness on the performance of CsFA‐based HTM‐free C‐PSCs are addressed. Herein, the devices are fabricated with a simple structure fluorine‐doped tin oxide /TiO2 nanoparticles (TiO2 NPs)/Cs0.17FA0.83Pb(I0.83Br0.17)3/carbon, using low‐temperature processes (≤150 °C) under ambient air conditions. By optimizing TiO2 NP layer thickness via spin‐coating speed adjustments, the ETL's coverage and compactness are improved, enhancing the perovskite film's quality, crystallinity, and grain size. An optimal TiO2 ETL at 1500 rpm yields 10.80% efficiency and demonstrates exceptional stability, maintaining 80% efficiency over 120 days in an air environment without encapsulation. The enhancement in device performance is attributed to improved surface properties of the TiO2 NPs ETL, effectively reducing interfacial charge recombination. This straightforwardly supports the development of sustainable, commercial‐ready CsFA HTM‐free C‐PSCs.
期刊介绍:
The physica status solidi (pss) journal group is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Among the largest and most established international publications, the pss journals publish reviews, letters and original articles, as regular content as well as in special issues and topical sections.