{"title":"粒度分布对芹菜釉特性的影响","authors":"Betül Yıldız","doi":"10.1007/s41779-024-01058-y","DOIUrl":null,"url":null,"abstract":"<p>The microstructure and surface properties of ceramic glaze are influenced by chemical composition, particle size distribution, glaze application conditions, and firing parameters. This study specifically focused on the influence of glaze particle size distribution on the thermal behavior, microstructure, and surface appearance of barium frit based ceramic glaze in the floor tile firing process. The investigation involved examining the impact of four distinct particle size dimensions (d50: 5.7 μm, 6.8 μm, 7.5 μm, 10.9 μm) on the glaze properties by using hot stage microscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), color and gloss measurements. The studies indicated that celsian is the dominant phase in the glaze structure. The sintering and softening temperatures of glazes decreased with the increase of milling time. A decrease in the particle size of the glaze slurry increased the whiteness index. As the average particle size (d50) of the glaze decreased, the number of crystals was also increased. The investigation results also suggested a relation between specular reflection and milling time. As the milling time extended, there was a corresponding increase in the magnitude of glossiness.</p>","PeriodicalId":673,"journal":{"name":"Journal of the Australian Ceramic Society","volume":"26 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of particle size distribution on the properties of celsian based glazes\",\"authors\":\"Betül Yıldız\",\"doi\":\"10.1007/s41779-024-01058-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The microstructure and surface properties of ceramic glaze are influenced by chemical composition, particle size distribution, glaze application conditions, and firing parameters. This study specifically focused on the influence of glaze particle size distribution on the thermal behavior, microstructure, and surface appearance of barium frit based ceramic glaze in the floor tile firing process. The investigation involved examining the impact of four distinct particle size dimensions (d50: 5.7 μm, 6.8 μm, 7.5 μm, 10.9 μm) on the glaze properties by using hot stage microscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), color and gloss measurements. The studies indicated that celsian is the dominant phase in the glaze structure. The sintering and softening temperatures of glazes decreased with the increase of milling time. A decrease in the particle size of the glaze slurry increased the whiteness index. As the average particle size (d50) of the glaze decreased, the number of crystals was also increased. The investigation results also suggested a relation between specular reflection and milling time. As the milling time extended, there was a corresponding increase in the magnitude of glossiness.</p>\",\"PeriodicalId\":673,\"journal\":{\"name\":\"Journal of the Australian Ceramic Society\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Australian Ceramic Society\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s41779-024-01058-y\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s41779-024-01058-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Effect of particle size distribution on the properties of celsian based glazes
The microstructure and surface properties of ceramic glaze are influenced by chemical composition, particle size distribution, glaze application conditions, and firing parameters. This study specifically focused on the influence of glaze particle size distribution on the thermal behavior, microstructure, and surface appearance of barium frit based ceramic glaze in the floor tile firing process. The investigation involved examining the impact of four distinct particle size dimensions (d50: 5.7 μm, 6.8 μm, 7.5 μm, 10.9 μm) on the glaze properties by using hot stage microscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), color and gloss measurements. The studies indicated that celsian is the dominant phase in the glaze structure. The sintering and softening temperatures of glazes decreased with the increase of milling time. A decrease in the particle size of the glaze slurry increased the whiteness index. As the average particle size (d50) of the glaze decreased, the number of crystals was also increased. The investigation results also suggested a relation between specular reflection and milling time. As the milling time extended, there was a corresponding increase in the magnitude of glossiness.
期刊介绍:
Publishes high quality research and technical papers in all areas of ceramic and related materials
Spans the broad and growing fields of ceramic technology, material science and bioceramics
Chronicles new advances in ceramic materials, manufacturing processes and applications
Journal of the Australian Ceramic Society since 1965
Professional language editing service is available through our affiliates Nature Research Editing Service and American Journal Experts at the author''s cost and does not guarantee that the manuscript will be reviewed or accepted