利用混合电容去离子法制备用于高性能除盐的层状结构 MnO2/CNTs 复合材料

IF 2.6 4区 化学 Q3 ELECTROCHEMISTRY
Hoang Anh Nguyen, Thi Thuy Linh Le, Minh Dai To, Anh Tuan Dao, Le Hoang Tan Doan, Van Vien Nguyen, Thai Hoang Nguyen, Viet Hai Le, Le Thanh Nguyen Huynh
{"title":"利用混合电容去离子法制备用于高性能除盐的层状结构 MnO2/CNTs 复合材料","authors":"Hoang Anh Nguyen,&nbsp;Thi Thuy Linh Le,&nbsp;Minh Dai To,&nbsp;Anh Tuan Dao,&nbsp;Le Hoang Tan Doan,&nbsp;Van Vien Nguyen,&nbsp;Thai Hoang Nguyen,&nbsp;Viet Hai Le,&nbsp;Le Thanh Nguyen Huynh","doi":"10.1007/s10008-024-05998-0","DOIUrl":null,"url":null,"abstract":"<div><p>Capacity deionization (CDI), which combines capacitive carbon electrodes and redox-active electrodes, has emerged as a promising method for water desalination. It enables higher ion removal capacity than CDI-containing carbonaceous electrodes. Our work aimed to synthesize layered structure δ-MnO<sub>2</sub>/CNTs composites via the sol-gel method, examining their suitability for hybrid capacitive deionization (HCDI). The XRD results showed a layered structure birnessite for all composites with a distance interlayer over 7.0 Å, while the SEM images confirmed the intercopration of MnO<sub>2</sub> particles and CNT fibers. The electrochemical evaluations evidenced the role of CNTs in enhancing the charge transfer and ionic diffusion in composites. Composite δ-MnO<sub>2</sub>/CNTs presented a specific capacitance of 160 F g<sup>−1</sup> at a charge-discharge rate of 1 A g<sup>-1</sup> upon 1600 cycles. In salt removal performance, the asymmetric cell AC||δ-MnO<sub>2</sub>/CNTs-1 showed the highest salt adsorption capacity (SAC) of 30.2 mg g<sup>−1</sup> and fast average salt adsorption rate (ASAR) of 3 mg g<sup>−1</sup> s<sup>−1</sup> under a constant applied potential 1.4 V in 200 ppm NaCl, rendering it a promising candidate for efficient and sustainable desalination technology.</p></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of layered structure MnO2/CNTs composites for high-performance salt removal by hybrid capacitive deionization\",\"authors\":\"Hoang Anh Nguyen,&nbsp;Thi Thuy Linh Le,&nbsp;Minh Dai To,&nbsp;Anh Tuan Dao,&nbsp;Le Hoang Tan Doan,&nbsp;Van Vien Nguyen,&nbsp;Thai Hoang Nguyen,&nbsp;Viet Hai Le,&nbsp;Le Thanh Nguyen Huynh\",\"doi\":\"10.1007/s10008-024-05998-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Capacity deionization (CDI), which combines capacitive carbon electrodes and redox-active electrodes, has emerged as a promising method for water desalination. It enables higher ion removal capacity than CDI-containing carbonaceous electrodes. Our work aimed to synthesize layered structure δ-MnO<sub>2</sub>/CNTs composites via the sol-gel method, examining their suitability for hybrid capacitive deionization (HCDI). The XRD results showed a layered structure birnessite for all composites with a distance interlayer over 7.0 Å, while the SEM images confirmed the intercopration of MnO<sub>2</sub> particles and CNT fibers. The electrochemical evaluations evidenced the role of CNTs in enhancing the charge transfer and ionic diffusion in composites. Composite δ-MnO<sub>2</sub>/CNTs presented a specific capacitance of 160 F g<sup>−1</sup> at a charge-discharge rate of 1 A g<sup>-1</sup> upon 1600 cycles. In salt removal performance, the asymmetric cell AC||δ-MnO<sub>2</sub>/CNTs-1 showed the highest salt adsorption capacity (SAC) of 30.2 mg g<sup>−1</sup> and fast average salt adsorption rate (ASAR) of 3 mg g<sup>−1</sup> s<sup>−1</sup> under a constant applied potential 1.4 V in 200 ppm NaCl, rendering it a promising candidate for efficient and sustainable desalination technology.</p></div>\",\"PeriodicalId\":665,\"journal\":{\"name\":\"Journal of Solid State Electrochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solid State Electrochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10008-024-05998-0\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10008-024-05998-0","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

电容式去离子(CDI)结合了电容式碳电极和氧化还原活性电极,已成为一种很有前途的海水淡化方法。与含CDI的碳质电极相比,它具有更高的离子去除能力。我们的研究旨在通过溶胶-凝胶法合成层状结构的 δ-MnO2/CNTs 复合材料,考察其在混合电容式去离子(HCDI)中的适用性。XRD 结果表明,所有复合材料都具有层状结构,层间距离超过 7.0 Å,而 SEM 图像则证实了 MnO2 颗粒和 CNT 纤维的相互渗透。电化学评估证明了 CNT 在增强复合材料电荷转移和离子扩散方面的作用。在充放电速率为 1 A g-1 时,δ-MnO2/CNT 复合材料在 1600 次循环后的比电容为 160 F g-1。在除盐性能方面,非对称电池 AC||δ-MnO2/CNTs-1显示出最高的盐吸附容量(SAC)(30.2 mg g-1)和快速平均盐吸附速率(ASAR)(3 mg g-1 s-1),在200 ppm NaCl中的恒定应用电位为1.4 V,使其成为高效和可持续海水淡化技术的理想候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Preparation of layered structure MnO2/CNTs composites for high-performance salt removal by hybrid capacitive deionization

Preparation of layered structure MnO2/CNTs composites for high-performance salt removal by hybrid capacitive deionization

Capacity deionization (CDI), which combines capacitive carbon electrodes and redox-active electrodes, has emerged as a promising method for water desalination. It enables higher ion removal capacity than CDI-containing carbonaceous electrodes. Our work aimed to synthesize layered structure δ-MnO2/CNTs composites via the sol-gel method, examining their suitability for hybrid capacitive deionization (HCDI). The XRD results showed a layered structure birnessite for all composites with a distance interlayer over 7.0 Å, while the SEM images confirmed the intercopration of MnO2 particles and CNT fibers. The electrochemical evaluations evidenced the role of CNTs in enhancing the charge transfer and ionic diffusion in composites. Composite δ-MnO2/CNTs presented a specific capacitance of 160 F g−1 at a charge-discharge rate of 1 A g-1 upon 1600 cycles. In salt removal performance, the asymmetric cell AC||δ-MnO2/CNTs-1 showed the highest salt adsorption capacity (SAC) of 30.2 mg g−1 and fast average salt adsorption rate (ASAR) of 3 mg g−1 s−1 under a constant applied potential 1.4 V in 200 ppm NaCl, rendering it a promising candidate for efficient and sustainable desalination technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
4.00%
发文量
227
审稿时长
4.1 months
期刊介绍: The Journal of Solid State Electrochemistry is devoted to all aspects of solid-state chemistry and solid-state physics in electrochemistry. The Journal of Solid State Electrochemistry publishes papers on all aspects of electrochemistry of solid compounds, including experimental and theoretical, basic and applied work. It equally publishes papers on the thermodynamics and kinetics of electrochemical reactions if at least one actively participating phase is solid. Also of interest are articles on the transport of ions and electrons in solids whenever these processes are relevant to electrochemical reactions and on the use of solid-state electrochemical reactions in the analysis of solids and their surfaces. The journal covers solid-state electrochemistry and focusses on the following fields: mechanisms of solid-state electrochemical reactions, semiconductor electrochemistry, electrochemical batteries, accumulators and fuel cells, electrochemical mineral leaching, galvanic metal plating, electrochemical potential memory devices, solid-state electrochemical sensors, ion and electron transport in solid materials and polymers, electrocatalysis, photoelectrochemistry, corrosion of solid materials, solid-state electroanalysis, electrochemical machining of materials, electrochromism and electrochromic devices, new electrochemical solid-state synthesis. The Journal of Solid State Electrochemistry makes the professional in research and industry aware of this swift progress and its importance for future developments and success in the above-mentioned fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信