微/纳米多孔介质渗透性测量的克林肯贝格修正理论分析

IF 2.7 3区 工程技术 Q3 ENGINEERING, CHEMICAL
Zhiguo Tian, Mingbao Zhang, Moran Wang
{"title":"微/纳米多孔介质渗透性测量的克林肯贝格修正理论分析","authors":"Zhiguo Tian,&nbsp;Mingbao Zhang,&nbsp;Moran Wang","doi":"10.1007/s11242-024-02105-9","DOIUrl":null,"url":null,"abstract":"<div><p>We present a comprehensive theoretical analysis which integrates the Klinkenberg plot into the pulse decay method (PDM) to effectively address the slippage effect on permeability measurement of micro/nanoporous media. Employing an asymptotic perturbation analysis on the Navier–Stokes equation within a capillary model, our work fills a critical gap in the interpretation of PDM experimental data, particularly by considering the influence of Knudsen number on permeability. Our findings substantiate the reliability of the Klinkenberg plot in interpreting PDM data, particularly when the ratio between the pore volume and the upstream or downstream chamber is below 0.1. It is noteworthy that our study underscores the persistent presence of the slippage effect when one chamber is sealed, emphasizing the necessity for careful consideration in permeability measurements under such conditions. The robustness of the theoretical framework is validated through experimental results, providing strong supports for the accuracy and applicability of our approach in heat and mass studies in micro/nanoporous media.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"151 10-11","pages":"2041 - 2056"},"PeriodicalIF":2.7000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical Analysis of Klinkenberg Correction of Permeability Measurement of Micro/Nanoporous Media\",\"authors\":\"Zhiguo Tian,&nbsp;Mingbao Zhang,&nbsp;Moran Wang\",\"doi\":\"10.1007/s11242-024-02105-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present a comprehensive theoretical analysis which integrates the Klinkenberg plot into the pulse decay method (PDM) to effectively address the slippage effect on permeability measurement of micro/nanoporous media. Employing an asymptotic perturbation analysis on the Navier–Stokes equation within a capillary model, our work fills a critical gap in the interpretation of PDM experimental data, particularly by considering the influence of Knudsen number on permeability. Our findings substantiate the reliability of the Klinkenberg plot in interpreting PDM data, particularly when the ratio between the pore volume and the upstream or downstream chamber is below 0.1. It is noteworthy that our study underscores the persistent presence of the slippage effect when one chamber is sealed, emphasizing the necessity for careful consideration in permeability measurements under such conditions. The robustness of the theoretical framework is validated through experimental results, providing strong supports for the accuracy and applicability of our approach in heat and mass studies in micro/nanoporous media.</p></div>\",\"PeriodicalId\":804,\"journal\":{\"name\":\"Transport in Porous Media\",\"volume\":\"151 10-11\",\"pages\":\"2041 - 2056\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transport in Porous Media\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11242-024-02105-9\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport in Porous Media","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11242-024-02105-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种综合理论分析方法,它将克林肯贝格曲线图集成到脉冲衰减法(PDM)中,以有效解决微/纳米多孔介质渗透性测量中的滑动效应问题。通过在毛细管模型中对纳维-斯托克斯方程进行渐近扰动分析,我们的研究填补了 PDM 实验数据解释方面的一个重要空白,特别是考虑了克努森数对渗透率的影响。我们的研究结果证明了克林肯贝格曲线图在解释 PDM 数据方面的可靠性,尤其是当孔隙体积与上游或下游腔室之比低于 0.1 时。值得注意的是,我们的研究强调了当一个腔室被密封时,滑移效应的持续存在,从而强调了在这种条件下进行渗透率测量时需要仔细考虑的必要性。实验结果验证了理论框架的稳健性,为我们的方法在微/纳米多孔介质的热量和质量研究中的准确性和适用性提供了有力支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Theoretical Analysis of Klinkenberg Correction of Permeability Measurement of Micro/Nanoporous Media

Theoretical Analysis of Klinkenberg Correction of Permeability Measurement of Micro/Nanoporous Media

Theoretical Analysis of Klinkenberg Correction of Permeability Measurement of Micro/Nanoporous Media

We present a comprehensive theoretical analysis which integrates the Klinkenberg plot into the pulse decay method (PDM) to effectively address the slippage effect on permeability measurement of micro/nanoporous media. Employing an asymptotic perturbation analysis on the Navier–Stokes equation within a capillary model, our work fills a critical gap in the interpretation of PDM experimental data, particularly by considering the influence of Knudsen number on permeability. Our findings substantiate the reliability of the Klinkenberg plot in interpreting PDM data, particularly when the ratio between the pore volume and the upstream or downstream chamber is below 0.1. It is noteworthy that our study underscores the persistent presence of the slippage effect when one chamber is sealed, emphasizing the necessity for careful consideration in permeability measurements under such conditions. The robustness of the theoretical framework is validated through experimental results, providing strong supports for the accuracy and applicability of our approach in heat and mass studies in micro/nanoporous media.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transport in Porous Media
Transport in Porous Media 工程技术-工程:化工
CiteScore
5.30
自引率
7.40%
发文量
155
审稿时长
4.2 months
期刊介绍: -Publishes original research on physical, chemical, and biological aspects of transport in porous media- Papers on porous media research may originate in various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering)- Emphasizes theory, (numerical) modelling, laboratory work, and non-routine applications- Publishes work of a fundamental nature, of interest to a wide readership, that provides novel insight into porous media processes- Expanded in 2007 from 12 to 15 issues per year. Transport in Porous Media publishes original research on physical and chemical aspects of transport phenomena in rigid and deformable porous media. These phenomena, occurring in single and multiphase flow in porous domains, can be governed by extensive quantities such as mass of a fluid phase, mass of component of a phase, momentum, or energy. Moreover, porous medium deformations can be induced by the transport phenomena, by chemical and electro-chemical activities such as swelling, or by external loading through forces and displacements. These porous media phenomena may be studied by researchers from various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信