Jakob Raymaekers, Peter J. Rousseeuw, Tim Verdonck, Ruicong Yao
{"title":"PILOT 快速线性模型树","authors":"Jakob Raymaekers, Peter J. Rousseeuw, Tim Verdonck, Ruicong Yao","doi":"10.1007/s10994-024-06590-3","DOIUrl":null,"url":null,"abstract":"<p>Linear model trees are regression trees that incorporate linear models in the leaf nodes. This preserves the intuitive interpretation of decision trees and at the same time enables them to better capture linear relationships, which is hard for standard decision trees. But most existing methods for fitting linear model trees are time consuming and therefore not scalable to large data sets. In addition, they are more prone to overfitting and extrapolation issues than standard regression trees. In this paper we introduce PILOT, a new algorithm for linear model trees that is fast, regularized, stable and interpretable. PILOT trains in a greedy fashion like classic regression trees, but incorporates an <i>L</i><sup>2</sup> boosting approach and a model selection rule for fitting linear models in the nodes. The abbreviation PILOT stands for PIecewise Linear Organic Tree, where ‘organic’ refers to the fact that no pruning is carried out. PILOT has the same low time and space complexity as CART without its pruning. An empirical study indicates that PILOT tends to outperform standard decision trees and other linear model trees on a variety of data sets. Moreover, we prove its consistency in an additive model setting under weak assumptions. When the data is generated by a linear model, the convergence rate is polynomial.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"10 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast linear model trees by PILOT\",\"authors\":\"Jakob Raymaekers, Peter J. Rousseeuw, Tim Verdonck, Ruicong Yao\",\"doi\":\"10.1007/s10994-024-06590-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Linear model trees are regression trees that incorporate linear models in the leaf nodes. This preserves the intuitive interpretation of decision trees and at the same time enables them to better capture linear relationships, which is hard for standard decision trees. But most existing methods for fitting linear model trees are time consuming and therefore not scalable to large data sets. In addition, they are more prone to overfitting and extrapolation issues than standard regression trees. In this paper we introduce PILOT, a new algorithm for linear model trees that is fast, regularized, stable and interpretable. PILOT trains in a greedy fashion like classic regression trees, but incorporates an <i>L</i><sup>2</sup> boosting approach and a model selection rule for fitting linear models in the nodes. The abbreviation PILOT stands for PIecewise Linear Organic Tree, where ‘organic’ refers to the fact that no pruning is carried out. PILOT has the same low time and space complexity as CART without its pruning. An empirical study indicates that PILOT tends to outperform standard decision trees and other linear model trees on a variety of data sets. Moreover, we prove its consistency in an additive model setting under weak assumptions. When the data is generated by a linear model, the convergence rate is polynomial.</p>\",\"PeriodicalId\":49900,\"journal\":{\"name\":\"Machine Learning\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10994-024-06590-3\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10994-024-06590-3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
摘要
线性模型树是在叶节点中加入线性模型的回归树。这既保留了决策树的直观解释,又能使其更好地捕捉线性关系,而标准决策树很难做到这一点。但是,现有的大多数拟合线性模型树的方法都很耗时,因此无法扩展到大型数据集。此外,与标准回归树相比,它们更容易出现过拟合和外推问题。在本文中,我们介绍了 PILOT,一种快速、正则化、稳定和可解释的线性模型树新算法。PILOT 与经典回归树一样采用贪婪方式进行训练,但在节点中加入了 L2 提升方法和拟合线性模型的模型选择规则。缩写 PILOT 是 PIecewise Linear Organic Tree 的缩写,其中的 "organic "指的是不进行修剪。PILOT 与不进行剪枝的 CART 一样,具有较低的时间和空间复杂度。实证研究表明,PILOT 在各种数据集上的表现往往优于标准决策树和其他线性模型树。此外,我们还证明了它在弱假设条件下的加法模型设置中的一致性。当数据由线性模型生成时,收敛速率为多项式。
Linear model trees are regression trees that incorporate linear models in the leaf nodes. This preserves the intuitive interpretation of decision trees and at the same time enables them to better capture linear relationships, which is hard for standard decision trees. But most existing methods for fitting linear model trees are time consuming and therefore not scalable to large data sets. In addition, they are more prone to overfitting and extrapolation issues than standard regression trees. In this paper we introduce PILOT, a new algorithm for linear model trees that is fast, regularized, stable and interpretable. PILOT trains in a greedy fashion like classic regression trees, but incorporates an L2 boosting approach and a model selection rule for fitting linear models in the nodes. The abbreviation PILOT stands for PIecewise Linear Organic Tree, where ‘organic’ refers to the fact that no pruning is carried out. PILOT has the same low time and space complexity as CART without its pruning. An empirical study indicates that PILOT tends to outperform standard decision trees and other linear model trees on a variety of data sets. Moreover, we prove its consistency in an additive model setting under weak assumptions. When the data is generated by a linear model, the convergence rate is polynomial.
期刊介绍:
Machine Learning serves as a global platform dedicated to computational approaches in learning. The journal reports substantial findings on diverse learning methods applied to various problems, offering support through empirical studies, theoretical analysis, or connections to psychological phenomena. It demonstrates the application of learning methods to solve significant problems and aims to enhance the conduct of machine learning research with a focus on verifiable and replicable evidence in published papers.