S1不变凯勒爱因斯坦6-manifolds上的显式无边瞬子

IF 1.6 3区 数学 Q1 MATHEMATICS
Udhav Fowdar
{"title":"S1不变凯勒爱因斯坦6-manifolds上的显式无边瞬子","authors":"Udhav Fowdar","doi":"10.1016/j.geomphys.2024.105269","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the dimensional reduction of the (deformed) Hermitian Yang–Mills condition on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-invariant Kähler Einstein 6-manifolds. This allows us to reformulate the (deformed) Hermitian Yang–Mills equations in terms of data on the quotient Kähler 4-manifold. In particular, when the gauge group is <span><math><mi>U</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span> we apply this construction to the canonical bundles of <span><math><mi>C</mi><msup><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and <span><math><mi>C</mi><msup><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>×</mo><mi>C</mi><msup><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> endowed with the Calabi ansatz metric to find abelian instantons. We show that these are determined by a suitable subset of the spectrum of the zero section and are explicitly given in terms of certain hypergeometric functions. As a by-product of our investigation we find a coordinate expression for the holomorphic volume form on <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>C</mi><msup><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub><mo>(</mo><mo>−</mo><mn>3</mn><mo>)</mo></math></span> and use it to construct a new special Lagrangian foliation. We also find 1-parameter families of explicit deformed Hermitian Yang–Mills connections on certain non-compact <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-invariant Kähler Einstein 6-manifolds.</p></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0393044024001700/pdfft?md5=3be2e32d3ca8ae8fe82fd36f1847d244&pid=1-s2.0-S0393044024001700-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Explicit abelian instantons on S1-invariant Kähler Einstein 6-manifolds\",\"authors\":\"Udhav Fowdar\",\"doi\":\"10.1016/j.geomphys.2024.105269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the dimensional reduction of the (deformed) Hermitian Yang–Mills condition on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-invariant Kähler Einstein 6-manifolds. This allows us to reformulate the (deformed) Hermitian Yang–Mills equations in terms of data on the quotient Kähler 4-manifold. In particular, when the gauge group is <span><math><mi>U</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span> we apply this construction to the canonical bundles of <span><math><mi>C</mi><msup><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and <span><math><mi>C</mi><msup><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>×</mo><mi>C</mi><msup><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> endowed with the Calabi ansatz metric to find abelian instantons. We show that these are determined by a suitable subset of the spectrum of the zero section and are explicitly given in terms of certain hypergeometric functions. As a by-product of our investigation we find a coordinate expression for the holomorphic volume form on <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>C</mi><msup><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub><mo>(</mo><mo>−</mo><mn>3</mn><mo>)</mo></math></span> and use it to construct a new special Lagrangian foliation. We also find 1-parameter families of explicit deformed Hermitian Yang–Mills connections on certain non-compact <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-invariant Kähler Einstein 6-manifolds.</p></div>\",\"PeriodicalId\":55602,\"journal\":{\"name\":\"Journal of Geometry and Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0393044024001700/pdfft?md5=3be2e32d3ca8ae8fe82fd36f1847d244&pid=1-s2.0-S0393044024001700-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometry and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0393044024001700\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044024001700","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了不变量凯勒爱因斯坦 6-manifolds上(变形)赫米特杨-米尔斯条件的降维问题。这样,我们就可以根据商凯勒 4-manifold上的数据重新表述(变形)赫米特杨-米尔斯方程。特别是当轨距组为时,我们将这一构造应用于卡拉比解析公设的和的典型束,以找到非等边瞬子。我们证明,这些瞬子是由零段频谱的一个合适子集决定的,并以某些超几何函数明确给出。作为研究的副产品,我们找到了全形体积形式的坐标表达式,并用它构建了一个新的特殊拉格朗日对折。我们还发现了某些非紧凑-不变凯勒爱因斯坦 6-manifolds(凯勒爱因斯坦 6-manifolds)上显式变形赫米特杨-米尔斯连接的 1 参数族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Explicit abelian instantons on S1-invariant Kähler Einstein 6-manifolds

We consider the dimensional reduction of the (deformed) Hermitian Yang–Mills condition on S1-invariant Kähler Einstein 6-manifolds. This allows us to reformulate the (deformed) Hermitian Yang–Mills equations in terms of data on the quotient Kähler 4-manifold. In particular, when the gauge group is U(1) we apply this construction to the canonical bundles of CP2 and CP1×CP1 endowed with the Calabi ansatz metric to find abelian instantons. We show that these are determined by a suitable subset of the spectrum of the zero section and are explicitly given in terms of certain hypergeometric functions. As a by-product of our investigation we find a coordinate expression for the holomorphic volume form on OCP2(3) and use it to construct a new special Lagrangian foliation. We also find 1-parameter families of explicit deformed Hermitian Yang–Mills connections on certain non-compact S1-invariant Kähler Einstein 6-manifolds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geometry and Physics
Journal of Geometry and Physics 物理-物理:数学物理
CiteScore
2.90
自引率
6.70%
发文量
205
审稿时长
64 days
期刊介绍: The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields. The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered. The Journal covers the following areas of research: Methods of: • Algebraic and Differential Topology • Algebraic Geometry • Real and Complex Differential Geometry • Riemannian Manifolds • Symplectic Geometry • Global Analysis, Analysis on Manifolds • Geometric Theory of Differential Equations • Geometric Control Theory • Lie Groups and Lie Algebras • Supermanifolds and Supergroups • Discrete Geometry • Spinors and Twistors Applications to: • Strings and Superstrings • Noncommutative Topology and Geometry • Quantum Groups • Geometric Methods in Statistics and Probability • Geometry Approaches to Thermodynamics • Classical and Quantum Dynamical Systems • Classical and Quantum Integrable Systems • Classical and Quantum Mechanics • Classical and Quantum Field Theory • General Relativity • Quantum Information • Quantum Gravity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信