Antonella Marchesiello , Daniel Reyes , Libor Šnobl
{"title":"曲线背景下具有非径向势能的磁单极子超可积分族","authors":"Antonella Marchesiello , Daniel Reyes , Libor Šnobl","doi":"10.1016/j.geomphys.2024.105261","DOIUrl":null,"url":null,"abstract":"<div><p>We review some known results on the superintegrability of monopole systems in the three-dimensional (3D) Euclidean space and in the 3D generalized Taub-NUT spaces. We show that these results can be extended to certain curved backgrounds that, for suitable choice of the domain of the coordinates, can be related via conformal transformations to systems in Taub-NUT spaces. These include the multifold Kepler systems as special cases. The curvature of the space is not constant and depends on a rational parameter that is also related to the order of the integrals. New results on minimal superintegrability when the electrostatic potential depends on both radial and angular variables are also presented.</p></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superintegrable families of magnetic monopoles with non-radial potential in curved background\",\"authors\":\"Antonella Marchesiello , Daniel Reyes , Libor Šnobl\",\"doi\":\"10.1016/j.geomphys.2024.105261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We review some known results on the superintegrability of monopole systems in the three-dimensional (3D) Euclidean space and in the 3D generalized Taub-NUT spaces. We show that these results can be extended to certain curved backgrounds that, for suitable choice of the domain of the coordinates, can be related via conformal transformations to systems in Taub-NUT spaces. These include the multifold Kepler systems as special cases. The curvature of the space is not constant and depends on a rational parameter that is also related to the order of the integrals. New results on minimal superintegrability when the electrostatic potential depends on both radial and angular variables are also presented.</p></div>\",\"PeriodicalId\":55602,\"journal\":{\"name\":\"Journal of Geometry and Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometry and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0393044024001621\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044024001621","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Superintegrable families of magnetic monopoles with non-radial potential in curved background
We review some known results on the superintegrability of monopole systems in the three-dimensional (3D) Euclidean space and in the 3D generalized Taub-NUT spaces. We show that these results can be extended to certain curved backgrounds that, for suitable choice of the domain of the coordinates, can be related via conformal transformations to systems in Taub-NUT spaces. These include the multifold Kepler systems as special cases. The curvature of the space is not constant and depends on a rational parameter that is also related to the order of the integrals. New results on minimal superintegrability when the electrostatic potential depends on both radial and angular variables are also presented.
期刊介绍:
The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields.
The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered.
The Journal covers the following areas of research:
Methods of:
• Algebraic and Differential Topology
• Algebraic Geometry
• Real and Complex Differential Geometry
• Riemannian Manifolds
• Symplectic Geometry
• Global Analysis, Analysis on Manifolds
• Geometric Theory of Differential Equations
• Geometric Control Theory
• Lie Groups and Lie Algebras
• Supermanifolds and Supergroups
• Discrete Geometry
• Spinors and Twistors
Applications to:
• Strings and Superstrings
• Noncommutative Topology and Geometry
• Quantum Groups
• Geometric Methods in Statistics and Probability
• Geometry Approaches to Thermodynamics
• Classical and Quantum Dynamical Systems
• Classical and Quantum Integrable Systems
• Classical and Quantum Mechanics
• Classical and Quantum Field Theory
• General Relativity
• Quantum Information
• Quantum Gravity