Roberta Fabbri, Alessandra Scidà, Emanuela Saracino, Giorgia Conte, Alessandro Kovtun, Andrea Candini, Denisa Kirdajova, Diletta Spennato, Valeria Marchetti, Chiara Lazzarini, Aikaterini Konstantoulaki, Paolo Dambruoso, Marco Caprini, Michele Muccini, Mauro Ursino, Miroslava Anderova, Emanuele Treossi, Roberto Zamboni, Vincenzo Palermo, Valentina Benfenati
{"title":"氧化石墨烯电极可对大脑星形胶质细胞中不同的钙信号进行电刺激","authors":"Roberta Fabbri, Alessandra Scidà, Emanuela Saracino, Giorgia Conte, Alessandro Kovtun, Andrea Candini, Denisa Kirdajova, Diletta Spennato, Valeria Marchetti, Chiara Lazzarini, Aikaterini Konstantoulaki, Paolo Dambruoso, Marco Caprini, Michele Muccini, Mauro Ursino, Miroslava Anderova, Emanuele Treossi, Roberto Zamboni, Vincenzo Palermo, Valentina Benfenati","doi":"10.1038/s41565-024-01711-4","DOIUrl":null,"url":null,"abstract":"Astrocytes are responsible for maintaining homoeostasis and cognitive functions through calcium signalling, a process that is altered in brain diseases. Current bioelectronic tools are designed to study neurons and are not suitable for controlling calcium signals in astrocytes. Here, we show that electrical stimulation of astrocytes using electrodes coated with graphene oxide and reduced graphene oxide induces respectively a slow response to calcium, mediated by external calcium influx, and a sharp one, exclusively due to calcium release from intracellular stores. Our results suggest that the different conductivities of the substrate influence the electric field at the cell–electrolyte or cell–material interfaces, favouring different signalling events in vitro and ex vivo. Patch-clamp, voltage-sensitive dye and calcium imaging data support the proposed model. In summary, we provide evidence of a simple tool to selectively control distinct calcium signals in brain astrocytes for straightforward investigations in neuroscience and bioelectronic medicine. Electrical stimulation of astrocytes using electrodes coated with graphene oxide and reduced graphene oxide can be used to trigger specific calcium signals.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":null,"pages":null},"PeriodicalIF":38.1000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41565-024-01711-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Graphene oxide electrodes enable electrical stimulation of distinct calcium signalling in brain astrocytes\",\"authors\":\"Roberta Fabbri, Alessandra Scidà, Emanuela Saracino, Giorgia Conte, Alessandro Kovtun, Andrea Candini, Denisa Kirdajova, Diletta Spennato, Valeria Marchetti, Chiara Lazzarini, Aikaterini Konstantoulaki, Paolo Dambruoso, Marco Caprini, Michele Muccini, Mauro Ursino, Miroslava Anderova, Emanuele Treossi, Roberto Zamboni, Vincenzo Palermo, Valentina Benfenati\",\"doi\":\"10.1038/s41565-024-01711-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Astrocytes are responsible for maintaining homoeostasis and cognitive functions through calcium signalling, a process that is altered in brain diseases. Current bioelectronic tools are designed to study neurons and are not suitable for controlling calcium signals in astrocytes. Here, we show that electrical stimulation of astrocytes using electrodes coated with graphene oxide and reduced graphene oxide induces respectively a slow response to calcium, mediated by external calcium influx, and a sharp one, exclusively due to calcium release from intracellular stores. Our results suggest that the different conductivities of the substrate influence the electric field at the cell–electrolyte or cell–material interfaces, favouring different signalling events in vitro and ex vivo. Patch-clamp, voltage-sensitive dye and calcium imaging data support the proposed model. In summary, we provide evidence of a simple tool to selectively control distinct calcium signals in brain astrocytes for straightforward investigations in neuroscience and bioelectronic medicine. Electrical stimulation of astrocytes using electrodes coated with graphene oxide and reduced graphene oxide can be used to trigger specific calcium signals.\",\"PeriodicalId\":18915,\"journal\":{\"name\":\"Nature nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":38.1000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41565-024-01711-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41565-024-01711-4\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41565-024-01711-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Graphene oxide electrodes enable electrical stimulation of distinct calcium signalling in brain astrocytes
Astrocytes are responsible for maintaining homoeostasis and cognitive functions through calcium signalling, a process that is altered in brain diseases. Current bioelectronic tools are designed to study neurons and are not suitable for controlling calcium signals in astrocytes. Here, we show that electrical stimulation of astrocytes using electrodes coated with graphene oxide and reduced graphene oxide induces respectively a slow response to calcium, mediated by external calcium influx, and a sharp one, exclusively due to calcium release from intracellular stores. Our results suggest that the different conductivities of the substrate influence the electric field at the cell–electrolyte or cell–material interfaces, favouring different signalling events in vitro and ex vivo. Patch-clamp, voltage-sensitive dye and calcium imaging data support the proposed model. In summary, we provide evidence of a simple tool to selectively control distinct calcium signals in brain astrocytes for straightforward investigations in neuroscience and bioelectronic medicine. Electrical stimulation of astrocytes using electrodes coated with graphene oxide and reduced graphene oxide can be used to trigger specific calcium signals.
期刊介绍:
Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations.
Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.