Abdulrahman Ali Alzandi, Layla Yousif Abdullah Al Hijab, Zarah I. Alzahrani, Deyala M. Naguib
{"title":"纳米水葫芦蛋白吸附剂作为土壤改良剂,通过改善土壤酶和减轻氧化应激,缓解蚕豆幼苗的镉胁迫","authors":"Abdulrahman Ali Alzandi, Layla Yousif Abdullah Al Hijab, Zarah I. Alzahrani, Deyala M. Naguib","doi":"10.1007/s10450-024-00511-5","DOIUrl":null,"url":null,"abstract":"<p>Heavy metal pollution is a serious environmental problem. Most of the current techniques used to mitigate the toxic effects of heavy metals have limitations. This creates an urgent need to explore safer and more efficient methods to address these toxic effects. This study investigates the potential of nano-water hyacinth protein (nano-WHP) as an adsorbent and soil amendment to mitigate cadmium pollution. Nano-WHP is derived from water hyacinth protein and immobilized on nano-chitosan. The Cd adsorption capacity and removal efficiency of nano-WHP were determined. Nano-WHP was applied as a soil amendment to examine its impact on soil enzyme activity and the growth of common bean plants under Cd stress. Nano-WHP could remove 96% of Cd with an adsorption capacity of 150 mg Cd g⁻<sup>1</sup>. When used as a soil amendment under Cd stress, nano-WHP positively influenced soil enzyme activity, enhancing soil health and promoting the growth of common bean plants. The growth of nano-WHP-treated plants increased by approximately 35% and 50% in the first and second stages, respectively, compared to the control group under cadmium stress. Furthermore, nano-WHP significantly reduced oxidative stress markers such as lipid peroxidation, DNA oxidation, protein oxidation, and H₂O₂ levels, with reductions of about 90.63%, 85.13%, 79.35%, and 81.85%, respectively, compared to untreated plants. This reduction in oxidative stress markers is attributed to the lower availability of Cd and the heightened activity of the antioxidant machinery in nano-WHP-treated plants. These results establish a foundation for the formulation of sustainable and economically feasible methodologies to mitigate Cd contamination.</p>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nano-water hyacinth protein adsorbent as soil amendment alleviates cadmium stress in common bean seedlings by improving soil enzymes and mitigating oxidative stress\",\"authors\":\"Abdulrahman Ali Alzandi, Layla Yousif Abdullah Al Hijab, Zarah I. Alzahrani, Deyala M. Naguib\",\"doi\":\"10.1007/s10450-024-00511-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Heavy metal pollution is a serious environmental problem. Most of the current techniques used to mitigate the toxic effects of heavy metals have limitations. This creates an urgent need to explore safer and more efficient methods to address these toxic effects. This study investigates the potential of nano-water hyacinth protein (nano-WHP) as an adsorbent and soil amendment to mitigate cadmium pollution. Nano-WHP is derived from water hyacinth protein and immobilized on nano-chitosan. The Cd adsorption capacity and removal efficiency of nano-WHP were determined. Nano-WHP was applied as a soil amendment to examine its impact on soil enzyme activity and the growth of common bean plants under Cd stress. Nano-WHP could remove 96% of Cd with an adsorption capacity of 150 mg Cd g⁻<sup>1</sup>. When used as a soil amendment under Cd stress, nano-WHP positively influenced soil enzyme activity, enhancing soil health and promoting the growth of common bean plants. The growth of nano-WHP-treated plants increased by approximately 35% and 50% in the first and second stages, respectively, compared to the control group under cadmium stress. Furthermore, nano-WHP significantly reduced oxidative stress markers such as lipid peroxidation, DNA oxidation, protein oxidation, and H₂O₂ levels, with reductions of about 90.63%, 85.13%, 79.35%, and 81.85%, respectively, compared to untreated plants. This reduction in oxidative stress markers is attributed to the lower availability of Cd and the heightened activity of the antioxidant machinery in nano-WHP-treated plants. These results establish a foundation for the formulation of sustainable and economically feasible methodologies to mitigate Cd contamination.</p>\",\"PeriodicalId\":458,\"journal\":{\"name\":\"Adsorption\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adsorption\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10450-024-00511-5\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10450-024-00511-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Nano-water hyacinth protein adsorbent as soil amendment alleviates cadmium stress in common bean seedlings by improving soil enzymes and mitigating oxidative stress
Heavy metal pollution is a serious environmental problem. Most of the current techniques used to mitigate the toxic effects of heavy metals have limitations. This creates an urgent need to explore safer and more efficient methods to address these toxic effects. This study investigates the potential of nano-water hyacinth protein (nano-WHP) as an adsorbent and soil amendment to mitigate cadmium pollution. Nano-WHP is derived from water hyacinth protein and immobilized on nano-chitosan. The Cd adsorption capacity and removal efficiency of nano-WHP were determined. Nano-WHP was applied as a soil amendment to examine its impact on soil enzyme activity and the growth of common bean plants under Cd stress. Nano-WHP could remove 96% of Cd with an adsorption capacity of 150 mg Cd g⁻1. When used as a soil amendment under Cd stress, nano-WHP positively influenced soil enzyme activity, enhancing soil health and promoting the growth of common bean plants. The growth of nano-WHP-treated plants increased by approximately 35% and 50% in the first and second stages, respectively, compared to the control group under cadmium stress. Furthermore, nano-WHP significantly reduced oxidative stress markers such as lipid peroxidation, DNA oxidation, protein oxidation, and H₂O₂ levels, with reductions of about 90.63%, 85.13%, 79.35%, and 81.85%, respectively, compared to untreated plants. This reduction in oxidative stress markers is attributed to the lower availability of Cd and the heightened activity of the antioxidant machinery in nano-WHP-treated plants. These results establish a foundation for the formulation of sustainable and economically feasible methodologies to mitigate Cd contamination.
期刊介绍:
The journal Adsorption provides authoritative information on adsorption and allied fields to scientists, engineers, and technologists throughout the world. The information takes the form of peer-reviewed articles, R&D notes, topical review papers, tutorial papers, book reviews, meeting announcements, and news.
Coverage includes fundamental and practical aspects of adsorption: mathematics, thermodynamics, chemistry, and physics, as well as processes, applications, models engineering, and equipment design.
Among the topics are Adsorbents: new materials, new synthesis techniques, characterization of structure and properties, and applications; Equilibria: novel theories or semi-empirical models, experimental data, and new measurement methods; Kinetics: new models, experimental data, and measurement methods. Processes: chemical, biochemical, environmental, and other applications, purification or bulk separation, fixed bed or moving bed systems, simulations, experiments, and design procedures.