基于酚嗪的纳米结构共轭微孔聚合物混合阳极可提高有机锰氢离子电池的功率和实用性

IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY
Rebecca Grieco, Alba Fombona-Pascual, Nagaraj Patil, Diego Alvan, Marta Liras, Rebeca Marcilla
{"title":"基于酚嗪的纳米结构共轭微孔聚合物混合阳极可提高有机锰氢离子电池的功率和实用性","authors":"Rebecca Grieco,&nbsp;Alba Fombona-Pascual,&nbsp;Nagaraj Patil,&nbsp;Diego Alvan,&nbsp;Marta Liras,&nbsp;Rebeca Marcilla","doi":"10.1002/batt.202400346","DOIUrl":null,"url":null,"abstract":"<p>Organic-manganese hydronium-ion batteries are gaining attention for their safety, sustainability, and high rate capabilities. However, their electrochemical performance faces challenges due to organic active-materials’ inferior properties, including low conductivity and solubility, and limited content (&lt;60 wt %) and loading (&lt;2 mg cm<sup>−2</sup>) in the anode. To address this, we developed a high-performance battery using a phenazine-based conjugated microporous polymer hybrid anode (IEP-27-SR), utilizing hydronium-ion coordination/un-coordination chemistry. The IEP-27-SR anode features enhanced structural characteristics, such as a high BET specific surface area, mixed micro-/mesoporosity, nanostructurization, and hybridization, enabling rapid hydronium-ion mobility. The resulting IEP-27-SR//MnO<sub>2</sub>@GF full-cell demonstrates high capacity (101 mAh g<sup>−1</sup> at 2 C), excellent rate performance (41 mAh g<sup>−1</sup> at 100 C), ultrafast-charging capability (80 % charged in 18 seconds), and impressive cycling stability with 83 % capacity retention over 20400 cycles at 30 C with a regular polymer mass loading of 2 mg cm<sup>−2</sup>, despite its high content (80 wt %) in the anode. Moreover, it shows operability at low temperatures (63 mAh g<sup>−1</sup> at −40 °C). Most importantly, the full-cell with a high-mass-loading polymer anode (30 mg cm<sup>−2</sup>) achieves practically relevant areal capacity (3.4 mAh cm<sup>−2</sup> at 4 mA cm<sup>−2</sup>) and sustains 2 mAh cm<sup>−2</sup> under an extremely high areal current (50 mA cm<sup>−2</sup>). This breakthrough highlights the progress of organic hydronium-ion batteries, representing progress toward practical, sustainable energy storage solutions.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 2","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400346","citationCount":"0","resultStr":"{\"title\":\"A Nanostructured Phenazine-Based Conjugated Microporous Polymer Hybrid Anode Boosts Power and Practicability of Organic-Manganese Hydronium-Ion Batteries\",\"authors\":\"Rebecca Grieco,&nbsp;Alba Fombona-Pascual,&nbsp;Nagaraj Patil,&nbsp;Diego Alvan,&nbsp;Marta Liras,&nbsp;Rebeca Marcilla\",\"doi\":\"10.1002/batt.202400346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Organic-manganese hydronium-ion batteries are gaining attention for their safety, sustainability, and high rate capabilities. However, their electrochemical performance faces challenges due to organic active-materials’ inferior properties, including low conductivity and solubility, and limited content (&lt;60 wt %) and loading (&lt;2 mg cm<sup>−2</sup>) in the anode. To address this, we developed a high-performance battery using a phenazine-based conjugated microporous polymer hybrid anode (IEP-27-SR), utilizing hydronium-ion coordination/un-coordination chemistry. The IEP-27-SR anode features enhanced structural characteristics, such as a high BET specific surface area, mixed micro-/mesoporosity, nanostructurization, and hybridization, enabling rapid hydronium-ion mobility. The resulting IEP-27-SR//MnO<sub>2</sub>@GF full-cell demonstrates high capacity (101 mAh g<sup>−1</sup> at 2 C), excellent rate performance (41 mAh g<sup>−1</sup> at 100 C), ultrafast-charging capability (80 % charged in 18 seconds), and impressive cycling stability with 83 % capacity retention over 20400 cycles at 30 C with a regular polymer mass loading of 2 mg cm<sup>−2</sup>, despite its high content (80 wt %) in the anode. Moreover, it shows operability at low temperatures (63 mAh g<sup>−1</sup> at −40 °C). Most importantly, the full-cell with a high-mass-loading polymer anode (30 mg cm<sup>−2</sup>) achieves practically relevant areal capacity (3.4 mAh cm<sup>−2</sup> at 4 mA cm<sup>−2</sup>) and sustains 2 mAh cm<sup>−2</sup> under an extremely high areal current (50 mA cm<sup>−2</sup>). This breakthrough highlights the progress of organic hydronium-ion batteries, representing progress toward practical, sustainable energy storage solutions.</p>\",\"PeriodicalId\":132,\"journal\":{\"name\":\"Batteries & Supercaps\",\"volume\":\"8 2\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400346\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Batteries & Supercaps\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400346\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400346","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

有机锰氢离子电池因其安全性、可持续性和高倍率能力而备受关注。然而,由于有机活性材料的低导电性和低溶解性等劣质特性,以及阳极中有限的含量(60 wt%)和负载(2 mg/cm2),它们的电化学性能面临着挑战。为了解决这一问题,我们利用膦离子配位/非配位化学,开发了一种使用酚嗪基共轭微孔聚合物混合阳极(IEP-27-SR)的高性能电池。IEP-27-SR 具有增强的结构特征,如高 BET 比表面积、混合微孔/介孔、纳米结构化和杂化,从而实现了铵离子的快速迁移。由此产生的 IEP-27-SR//MnO2@GF 全电池具有高容量(2 摄氏度时 101 毫安时/克)、优异的速率性能(100 摄氏度时 41 毫安时/克)、超快充电能力(18 秒内充电 80%)和令人印象深刻的循环能力,尽管阳极中的聚合物含量较高(80 wt%),但在 30 摄氏度、常规聚合物质量负载为 2 毫克/平方厘米的条件下,20400 次循环的容量保持率仍高达 83%。此外,它还显示出低温下的可操作性(-40 ºC 时为 63 mAh/g)。最重要的是,采用高大质量负载聚合物阳极(30 毫克/平方厘米)的全电池达到了实际相关的等离子容量(4 毫安/平方厘米时为 3.4 毫安时/平方厘米),并在极高等离子电流(50 毫安/平方厘米)下保持 2 毫安时/平方厘米。这一突破彰显了有机氢离子电池的进步,代表了向实用电池解决方案迈进的进程
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Nanostructured Phenazine-Based Conjugated Microporous Polymer Hybrid Anode Boosts Power and Practicability of Organic-Manganese Hydronium-Ion Batteries

A Nanostructured Phenazine-Based Conjugated Microporous Polymer Hybrid Anode Boosts Power and Practicability of Organic-Manganese Hydronium-Ion Batteries

Organic-manganese hydronium-ion batteries are gaining attention for their safety, sustainability, and high rate capabilities. However, their electrochemical performance faces challenges due to organic active-materials’ inferior properties, including low conductivity and solubility, and limited content (<60 wt %) and loading (<2 mg cm−2) in the anode. To address this, we developed a high-performance battery using a phenazine-based conjugated microporous polymer hybrid anode (IEP-27-SR), utilizing hydronium-ion coordination/un-coordination chemistry. The IEP-27-SR anode features enhanced structural characteristics, such as a high BET specific surface area, mixed micro-/mesoporosity, nanostructurization, and hybridization, enabling rapid hydronium-ion mobility. The resulting IEP-27-SR//MnO2@GF full-cell demonstrates high capacity (101 mAh g−1 at 2 C), excellent rate performance (41 mAh g−1 at 100 C), ultrafast-charging capability (80 % charged in 18 seconds), and impressive cycling stability with 83 % capacity retention over 20400 cycles at 30 C with a regular polymer mass loading of 2 mg cm−2, despite its high content (80 wt %) in the anode. Moreover, it shows operability at low temperatures (63 mAh g−1 at −40 °C). Most importantly, the full-cell with a high-mass-loading polymer anode (30 mg cm−2) achieves practically relevant areal capacity (3.4 mAh cm−2 at 4 mA cm−2) and sustains 2 mAh cm−2 under an extremely high areal current (50 mA cm−2). This breakthrough highlights the progress of organic hydronium-ion batteries, representing progress toward practical, sustainable energy storage solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
5.30%
发文量
223
期刊介绍: Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信