带铰链通风板的通风 H2/ 空气爆炸实验:表面密度的影响

IF 3.6 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Shikai Huang , Fang Wang , Caijun Xu , Jin Guo , Fan Zhang , Zelong Wu , Binhua Wu
{"title":"带铰链通风板的通风 H2/ 空气爆炸实验:表面密度的影响","authors":"Shikai Huang ,&nbsp;Fang Wang ,&nbsp;Caijun Xu ,&nbsp;Jin Guo ,&nbsp;Fan Zhang ,&nbsp;Zelong Wu ,&nbsp;Binhua Wu","doi":"10.1016/j.jlp.2024.105393","DOIUrl":null,"url":null,"abstract":"<div><p>The effect of inertial vent covers on deflagrations of fast-burning gases, such as hydrogen, has received limited attention, and recommendations for their safe venting are unavailable. To this end, experiments on vented explosion of H<sub>2</sub>/air mixtures, ignited from the center of a 1-m<sup>3</sup> chamber with a top vent covered by hinged aluminum plates of various surface densities (<span><math><mrow><msub><mi>W</mi><mi>s</mi></msub></mrow></math></span>), were performed at initial temperatures and pressures of 290 K and 100 kPa to investigate the effects of <span><math><mrow><msub><mi>W</mi><mi>s</mi></msub></mrow></math></span> on the flame evolution and pressure profile within and outside the vented vessel. Three pressure sensors (PS1-PS3) were used to record internal overpressure and another pressure sensor (PS4) was employed to monitor external overpressure. Current tests showed some unexpected results, which were inconsistent with previous research and available models. In this study, <span><math><mrow><msub><mi>P</mi><mi>max</mi></msub></mrow></math></span>, <span><math><mrow><msub><mi>P</mi><mrow><mi>r</mi><mi>e</mi><mi>d</mi></mrow></msub></mrow></math></span>, and <span><math><mrow><msub><mi>P</mi><mrow><mi>e</mi><mi>x</mi><mi>t</mi></mrow></msub></mrow></math></span> are focused on; <span><math><mrow><msub><mi>P</mi><mi>max</mi></msub></mrow></math></span> refers to the maximum internal overpressure recorded by PS1-PS3, <span><math><mrow><msub><mi>P</mi><mrow><mi>r</mi><mi>e</mi><mi>d</mi></mrow></msub></mrow></math></span> represents the highest <span><math><mrow><msub><mi>P</mi><mi>max</mi></msub></mrow></math></span> monitored by PS1-PS3 for a certain <span><math><mrow><msub><mi>W</mi><mi>s</mi></msub></mrow></math></span>, and <span><math><mrow><msub><mi>P</mi><mrow><mi>e</mi><mi>x</mi><mi>t</mi></mrow></msub></mrow></math></span> denotes the maximum external overpressure obtained by PS4. Experimental results reveal that for a given <span><math><mrow><msub><mi>W</mi><mi>s</mi></msub></mrow></math></span> , the highest and lowest <span><math><mrow><msub><mi>P</mi><mi>max</mi></msub></mrow></math></span> are always observed at the bottom and the center of the chamber, respectively. With the increase of <span><math><mrow><msub><mi>W</mi><mi>s</mi></msub></mrow></math></span> from 0 to 18.9, <span><math><mrow><msub><mi>P</mi><mrow><mi>e</mi><mi>x</mi><mi>t</mi></mrow></msub></mrow></math></span> first increases and then decreases, and it reaches its highest value when <span><math><mrow><msub><mi>W</mi><mi>s</mi></msub></mrow></math></span> is increased to 8.1 kg/m<sup>2</sup>. As <span><math><mrow><msub><mi>W</mi><mi>s</mi></msub></mrow></math></span> increases from 0 to 18.9, <span><math><mrow><msub><mi>P</mi><mrow><mi>r</mi><mi>e</mi><mi>d</mi></mrow></msub></mrow></math></span> first increases with <span><math><mrow><msub><mi>W</mi><mi>s</mi></msub></mrow></math></span> and reaches its maximum of 93 kPa at <span><math><mrow><msub><mi>W</mi><mi>s</mi></msub></mrow></math></span> = 8.1 kg/m<sup>2</sup> and thereafter decreases when <span><math><mrow><msub><mi>W</mi><mi>s</mi></msub></mrow></math></span> is increased to 13.5 kg/m<sup>2</sup>, and a further increase in <span><math><mrow><msub><mi>W</mi><mi>s</mi></msub></mrow></math></span> has a negligible effect on <span><math><mrow><msub><mi>P</mi><mrow><mi>r</mi><mi>e</mi><mi>d</mi></mrow></msub></mrow></math></span>. In comparison with an inertia-free vent cover, when a hinged vent panel is used, the external fireball looks more oblate, and the maximum flame length decreases with increasing <span><math><mrow><msub><mi>W</mi><mi>s</mi></msub></mrow></math></span>. The results of the study can provide a valuable reference for the explosion-proof design of inertial vent covers and hydrogen explosion risk assessment.</p></div>","PeriodicalId":16291,"journal":{"name":"Journal of Loss Prevention in The Process Industries","volume":"91 ","pages":"Article 105393"},"PeriodicalIF":3.6000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experiments on vented H2/air explosions with a hinged vent panel: Effects of surface density\",\"authors\":\"Shikai Huang ,&nbsp;Fang Wang ,&nbsp;Caijun Xu ,&nbsp;Jin Guo ,&nbsp;Fan Zhang ,&nbsp;Zelong Wu ,&nbsp;Binhua Wu\",\"doi\":\"10.1016/j.jlp.2024.105393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The effect of inertial vent covers on deflagrations of fast-burning gases, such as hydrogen, has received limited attention, and recommendations for their safe venting are unavailable. To this end, experiments on vented explosion of H<sub>2</sub>/air mixtures, ignited from the center of a 1-m<sup>3</sup> chamber with a top vent covered by hinged aluminum plates of various surface densities (<span><math><mrow><msub><mi>W</mi><mi>s</mi></msub></mrow></math></span>), were performed at initial temperatures and pressures of 290 K and 100 kPa to investigate the effects of <span><math><mrow><msub><mi>W</mi><mi>s</mi></msub></mrow></math></span> on the flame evolution and pressure profile within and outside the vented vessel. Three pressure sensors (PS1-PS3) were used to record internal overpressure and another pressure sensor (PS4) was employed to monitor external overpressure. Current tests showed some unexpected results, which were inconsistent with previous research and available models. In this study, <span><math><mrow><msub><mi>P</mi><mi>max</mi></msub></mrow></math></span>, <span><math><mrow><msub><mi>P</mi><mrow><mi>r</mi><mi>e</mi><mi>d</mi></mrow></msub></mrow></math></span>, and <span><math><mrow><msub><mi>P</mi><mrow><mi>e</mi><mi>x</mi><mi>t</mi></mrow></msub></mrow></math></span> are focused on; <span><math><mrow><msub><mi>P</mi><mi>max</mi></msub></mrow></math></span> refers to the maximum internal overpressure recorded by PS1-PS3, <span><math><mrow><msub><mi>P</mi><mrow><mi>r</mi><mi>e</mi><mi>d</mi></mrow></msub></mrow></math></span> represents the highest <span><math><mrow><msub><mi>P</mi><mi>max</mi></msub></mrow></math></span> monitored by PS1-PS3 for a certain <span><math><mrow><msub><mi>W</mi><mi>s</mi></msub></mrow></math></span>, and <span><math><mrow><msub><mi>P</mi><mrow><mi>e</mi><mi>x</mi><mi>t</mi></mrow></msub></mrow></math></span> denotes the maximum external overpressure obtained by PS4. Experimental results reveal that for a given <span><math><mrow><msub><mi>W</mi><mi>s</mi></msub></mrow></math></span> , the highest and lowest <span><math><mrow><msub><mi>P</mi><mi>max</mi></msub></mrow></math></span> are always observed at the bottom and the center of the chamber, respectively. With the increase of <span><math><mrow><msub><mi>W</mi><mi>s</mi></msub></mrow></math></span> from 0 to 18.9, <span><math><mrow><msub><mi>P</mi><mrow><mi>e</mi><mi>x</mi><mi>t</mi></mrow></msub></mrow></math></span> first increases and then decreases, and it reaches its highest value when <span><math><mrow><msub><mi>W</mi><mi>s</mi></msub></mrow></math></span> is increased to 8.1 kg/m<sup>2</sup>. As <span><math><mrow><msub><mi>W</mi><mi>s</mi></msub></mrow></math></span> increases from 0 to 18.9, <span><math><mrow><msub><mi>P</mi><mrow><mi>r</mi><mi>e</mi><mi>d</mi></mrow></msub></mrow></math></span> first increases with <span><math><mrow><msub><mi>W</mi><mi>s</mi></msub></mrow></math></span> and reaches its maximum of 93 kPa at <span><math><mrow><msub><mi>W</mi><mi>s</mi></msub></mrow></math></span> = 8.1 kg/m<sup>2</sup> and thereafter decreases when <span><math><mrow><msub><mi>W</mi><mi>s</mi></msub></mrow></math></span> is increased to 13.5 kg/m<sup>2</sup>, and a further increase in <span><math><mrow><msub><mi>W</mi><mi>s</mi></msub></mrow></math></span> has a negligible effect on <span><math><mrow><msub><mi>P</mi><mrow><mi>r</mi><mi>e</mi><mi>d</mi></mrow></msub></mrow></math></span>. In comparison with an inertia-free vent cover, when a hinged vent panel is used, the external fireball looks more oblate, and the maximum flame length decreases with increasing <span><math><mrow><msub><mi>W</mi><mi>s</mi></msub></mrow></math></span>. The results of the study can provide a valuable reference for the explosion-proof design of inertial vent covers and hydrogen explosion risk assessment.</p></div>\",\"PeriodicalId\":16291,\"journal\":{\"name\":\"Journal of Loss Prevention in The Process Industries\",\"volume\":\"91 \",\"pages\":\"Article 105393\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Loss Prevention in The Process Industries\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950423024001517\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Loss Prevention in The Process Industries","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950423024001517","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

惯性排气盖对氢气等快速燃烧气体爆燃的影响受到的关注有限,也没有关于其安全排气的建议。为此,我们在 290 K 和 100 kPa 的初始温度和压力下,对氢气/空气混合物的通风爆炸进行了实验,实验从一个 1 米长的密室中心点燃,顶部通风口由不同表面密度()的铰链铝板覆盖,以研究通风容器内外的火焰演变和压力曲线的影响。三个压力传感器(PS1-PS3)用于记录内部超压,另一个压力传感器(PS4)用于监测外部超压。目前的测试显示了一些意想不到的结果,与之前的研究和现有模型不一致。在本研究中,、、和是重点;指 PS1-PS3 记录的最大内部超压,代表 PS1-PS3 在一定条件下监测到的最高值,表示 PS4 获得的最大外部超压。实验结果表明,对于给定的 ,最高值和最低值总是分别出现在腔体的底部和中心。随着压力从 0 增加到 18.9,压力先增加后减小,当增加到 8.1 kg/m 时达到最高值。随着从 0 到 18.9 的增加,先是增加,在 = 8.1 千克/米时达到最大值 93 千帕,然后在增加到 13.5 千克/米时减小,进一步增加对压力的影响可以忽略不计。与无惯性的通风口盖板相比,当使用铰链通风口板时,外部火球看起来更扁平,最大火焰长度随着......的增加而减小。研究结果可为惯性通风口盖的防爆设计和氢气爆炸风险评估提供有价值的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experiments on vented H2/air explosions with a hinged vent panel: Effects of surface density

The effect of inertial vent covers on deflagrations of fast-burning gases, such as hydrogen, has received limited attention, and recommendations for their safe venting are unavailable. To this end, experiments on vented explosion of H2/air mixtures, ignited from the center of a 1-m3 chamber with a top vent covered by hinged aluminum plates of various surface densities (Ws), were performed at initial temperatures and pressures of 290 K and 100 kPa to investigate the effects of Ws on the flame evolution and pressure profile within and outside the vented vessel. Three pressure sensors (PS1-PS3) were used to record internal overpressure and another pressure sensor (PS4) was employed to monitor external overpressure. Current tests showed some unexpected results, which were inconsistent with previous research and available models. In this study, Pmax, Pred, and Pext are focused on; Pmax refers to the maximum internal overpressure recorded by PS1-PS3, Pred represents the highest Pmax monitored by PS1-PS3 for a certain Ws, and Pext denotes the maximum external overpressure obtained by PS4. Experimental results reveal that for a given Ws , the highest and lowest Pmax are always observed at the bottom and the center of the chamber, respectively. With the increase of Ws from 0 to 18.9, Pext first increases and then decreases, and it reaches its highest value when Ws is increased to 8.1 kg/m2. As Ws increases from 0 to 18.9, Pred first increases with Ws and reaches its maximum of 93 kPa at Ws = 8.1 kg/m2 and thereafter decreases when Ws is increased to 13.5 kg/m2, and a further increase in Ws has a negligible effect on Pred. In comparison with an inertia-free vent cover, when a hinged vent panel is used, the external fireball looks more oblate, and the maximum flame length decreases with increasing Ws. The results of the study can provide a valuable reference for the explosion-proof design of inertial vent covers and hydrogen explosion risk assessment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
14.30%
发文量
226
审稿时长
52 days
期刊介绍: The broad scope of the journal is process safety. Process safety is defined as the prevention and mitigation of process-related injuries and damage arising from process incidents involving fire, explosion and toxic release. Such undesired events occur in the process industries during the use, storage, manufacture, handling, and transportation of highly hazardous chemicals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信