通过 DNA 呼吸驱动的可编程质子水凝胶温度计

IF 6.4 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Luyang Wang, Zhen Wang, Feng Liu, Xinrui Zhang, Jihong Huang, Guoqing Wang
{"title":"通过 DNA 呼吸驱动的可编程质子水凝胶温度计","authors":"Luyang Wang,&nbsp;Zhen Wang,&nbsp;Feng Liu,&nbsp;Xinrui Zhang,&nbsp;Jihong Huang,&nbsp;Guoqing Wang","doi":"10.1002/admt.202400243","DOIUrl":null,"url":null,"abstract":"<p>Nanothermometry explores the use of temperature-dependent properties of materials for remote and sensitive thermal readout at the nanoscale. The currently established nanothermometers are largely limited by uncontrollable nanoparticle flocculation, complex experimental setup, and narrow working temperature range. Here it is shown that gold nanoparticles (e.g., spheres, rods) embedded in a hydrogel can afford sensitive, durable, and range-tunable temperature sensing via the terminal breathing of the nanoparticle surface-grafted DNA. The realization of the plasmonic hydrogel thermometer with a thermal sensitivity of ≤2 °C relies on the dynamically modulable interparticle spacing by thermo-responsive terminal base pairing/unpairing of the surface DNA. By altering the alcoholic ratio of the hydrogel, the temperature-response range can be continuously regulated based on solvent-mediated DNA base pairing. Compared with the colloidal counterpart, importantly, the hydrogel thermometer exhibits greatly improved thermal sensing capability (e.g., repeatability ≥50 times) while possessing excellent durability. Given the excellent durability, high sensitivity, and programmable temperature response range, the thermometers actuated by DNA breathing for advanced uses in human sensing and optoelectronics are within reach.</p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":"9 20","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Programmable Plasmonic Hydrogel Thermometers Actuated by DNA Breathing\",\"authors\":\"Luyang Wang,&nbsp;Zhen Wang,&nbsp;Feng Liu,&nbsp;Xinrui Zhang,&nbsp;Jihong Huang,&nbsp;Guoqing Wang\",\"doi\":\"10.1002/admt.202400243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nanothermometry explores the use of temperature-dependent properties of materials for remote and sensitive thermal readout at the nanoscale. The currently established nanothermometers are largely limited by uncontrollable nanoparticle flocculation, complex experimental setup, and narrow working temperature range. Here it is shown that gold nanoparticles (e.g., spheres, rods) embedded in a hydrogel can afford sensitive, durable, and range-tunable temperature sensing via the terminal breathing of the nanoparticle surface-grafted DNA. The realization of the plasmonic hydrogel thermometer with a thermal sensitivity of ≤2 °C relies on the dynamically modulable interparticle spacing by thermo-responsive terminal base pairing/unpairing of the surface DNA. By altering the alcoholic ratio of the hydrogel, the temperature-response range can be continuously regulated based on solvent-mediated DNA base pairing. Compared with the colloidal counterpart, importantly, the hydrogel thermometer exhibits greatly improved thermal sensing capability (e.g., repeatability ≥50 times) while possessing excellent durability. Given the excellent durability, high sensitivity, and programmable temperature response range, the thermometers actuated by DNA breathing for advanced uses in human sensing and optoelectronics are within reach.</p>\",\"PeriodicalId\":7292,\"journal\":{\"name\":\"Advanced Materials Technologies\",\"volume\":\"9 20\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Technologies\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/admt.202400243\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admt.202400243","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

纳米温度计探索利用材料随温度变化的特性,在纳米尺度上进行远程灵敏热读数。目前已有的纳米温度计主要受限于纳米粒子絮凝的不可控性、复杂的实验设置和狭窄的工作温度范围。这里的研究表明,嵌入水凝胶中的金纳米粒子(如球体、棒状)可以通过纳米粒子表面接枝 DNA 的末端呼吸来实现灵敏、持久和可调范围的温度传感。质子水凝胶温度计的热灵敏度≤2 °C,其实现有赖于通过表面 DNA 的热响应末端碱基配对/解除配对来动态调节粒子间距。通过改变水凝胶的酒精比例,可以在溶剂介导的 DNA 碱基配对基础上持续调节温度响应范围。重要的是,与胶体温度计相比,水凝胶温度计的热感应能力大大提高(例如,重复性≥50 次),同时具有出色的耐用性。鉴于其出色的耐用性、高灵敏度和可编程的温度响应范围,由 DNA 呼吸驱动的温度计在人体传感和光电领域的先进应用指日可待。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Programmable Plasmonic Hydrogel Thermometers Actuated by DNA Breathing

Programmable Plasmonic Hydrogel Thermometers Actuated by DNA Breathing

Nanothermometry explores the use of temperature-dependent properties of materials for remote and sensitive thermal readout at the nanoscale. The currently established nanothermometers are largely limited by uncontrollable nanoparticle flocculation, complex experimental setup, and narrow working temperature range. Here it is shown that gold nanoparticles (e.g., spheres, rods) embedded in a hydrogel can afford sensitive, durable, and range-tunable temperature sensing via the terminal breathing of the nanoparticle surface-grafted DNA. The realization of the plasmonic hydrogel thermometer with a thermal sensitivity of ≤2 °C relies on the dynamically modulable interparticle spacing by thermo-responsive terminal base pairing/unpairing of the surface DNA. By altering the alcoholic ratio of the hydrogel, the temperature-response range can be continuously regulated based on solvent-mediated DNA base pairing. Compared with the colloidal counterpart, importantly, the hydrogel thermometer exhibits greatly improved thermal sensing capability (e.g., repeatability ≥50 times) while possessing excellent durability. Given the excellent durability, high sensitivity, and programmable temperature response range, the thermometers actuated by DNA breathing for advanced uses in human sensing and optoelectronics are within reach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials Technologies
Advanced Materials Technologies Materials Science-General Materials Science
CiteScore
10.20
自引率
4.40%
发文量
566
期刊介绍: Advanced Materials Technologies Advanced Materials Technologies is the new home for all technology-related materials applications research, with particular focus on advanced device design, fabrication and integration, as well as new technologies based on novel materials. It bridges the gap between fundamental laboratory research and industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信