{"title":"全锑砷化镓薄膜串联太阳能电池的全光电模拟:从 4-T 配置到 2-T 配置的设计路线","authors":"","doi":"10.1016/j.asej.2024.102919","DOIUrl":null,"url":null,"abstract":"<div><p>Antimony chalcogenide, as a newcomer to light harvesting materials, is regarded as an auspicious contender for incorporation as a photoactive layer in thin film tandem solar cells (TFTSCs). The current study introduces the design of all-antimony chalcogenide TFTSC comprised of an Sb<sub>2</sub>S<sub>3</sub> (1.7 eV) front subcell and an Sb<sub>2</sub>Se<sub>3</sub> (1.2 eV) rear subcell. The challenges to migrating from four-terminal (4-T) to two-terminal (2-T) designs are highlighted and possible solutions are proposed. To commence, a calibration procedure for the two subcells is conducted in alignment with experimental investigations. The benchmarked solar cells yield a power conversion efficiency (PCE) of 8.08 % for the upper subcell and 10.58 % for the lower subcell. Subsequently, upon integration of both subcells within the initial 4-T Sb<sub>2</sub>S<sub>3</sub>/Sb<sub>2</sub>Se<sub>3</sub> TFTSC, the resultant PV cell attains a PCE of 12.27 %. Before transitioning it to a more efficient 2T tandem configuration, we explore alternative inorganic HTL materials to the Spiro-OMeTAD HTL to overcome its practical considerations. Cu<sub>2</sub>O is found to be the best HTL alternative to be included for both subcells. Upon stacking into the tandem structure, the combined cell exhibited an efficiency of 15.68 % and a notable <em>J<sub>sc</sub></em> of 16.23 mA/cm<sup>2</sup>. To further enhance the tandem performance, the device structure is optimized by engineering the CBO of two sub-cells and employing a double ETL design for the front sub-cell. At the considered current matching criterion, the tandem device PCE and <em>J<sub>sc</sub></em> are boosted to 27.86 % and 17.60 mA/cm<sup>2</sup>, respectively. Based on this full optoelectronic analysis, developed in the Silvaco TCAD environment, a 2-T all antimony chalcogenide tandem configuration can be realized and optimized, paving the way for future experimental endeavors.</p></div>","PeriodicalId":48648,"journal":{"name":"Ain Shams Engineering Journal","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2090447924002946/pdfft?md5=12a15b6337cb9b9678f7939956362adc&pid=1-s2.0-S2090447924002946-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Full optoelectronic simulation of all antimony chalcogenide thin film tandem solar cell: Design routes from 4-T to 2-T configuration\",\"authors\":\"\",\"doi\":\"10.1016/j.asej.2024.102919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Antimony chalcogenide, as a newcomer to light harvesting materials, is regarded as an auspicious contender for incorporation as a photoactive layer in thin film tandem solar cells (TFTSCs). The current study introduces the design of all-antimony chalcogenide TFTSC comprised of an Sb<sub>2</sub>S<sub>3</sub> (1.7 eV) front subcell and an Sb<sub>2</sub>Se<sub>3</sub> (1.2 eV) rear subcell. The challenges to migrating from four-terminal (4-T) to two-terminal (2-T) designs are highlighted and possible solutions are proposed. To commence, a calibration procedure for the two subcells is conducted in alignment with experimental investigations. The benchmarked solar cells yield a power conversion efficiency (PCE) of 8.08 % for the upper subcell and 10.58 % for the lower subcell. Subsequently, upon integration of both subcells within the initial 4-T Sb<sub>2</sub>S<sub>3</sub>/Sb<sub>2</sub>Se<sub>3</sub> TFTSC, the resultant PV cell attains a PCE of 12.27 %. Before transitioning it to a more efficient 2T tandem configuration, we explore alternative inorganic HTL materials to the Spiro-OMeTAD HTL to overcome its practical considerations. Cu<sub>2</sub>O is found to be the best HTL alternative to be included for both subcells. Upon stacking into the tandem structure, the combined cell exhibited an efficiency of 15.68 % and a notable <em>J<sub>sc</sub></em> of 16.23 mA/cm<sup>2</sup>. To further enhance the tandem performance, the device structure is optimized by engineering the CBO of two sub-cells and employing a double ETL design for the front sub-cell. At the considered current matching criterion, the tandem device PCE and <em>J<sub>sc</sub></em> are boosted to 27.86 % and 17.60 mA/cm<sup>2</sup>, respectively. Based on this full optoelectronic analysis, developed in the Silvaco TCAD environment, a 2-T all antimony chalcogenide tandem configuration can be realized and optimized, paving the way for future experimental endeavors.</p></div>\",\"PeriodicalId\":48648,\"journal\":{\"name\":\"Ain Shams Engineering Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2090447924002946/pdfft?md5=12a15b6337cb9b9678f7939956362adc&pid=1-s2.0-S2090447924002946-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ain Shams Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2090447924002946\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ain Shams Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2090447924002946","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Full optoelectronic simulation of all antimony chalcogenide thin film tandem solar cell: Design routes from 4-T to 2-T configuration
Antimony chalcogenide, as a newcomer to light harvesting materials, is regarded as an auspicious contender for incorporation as a photoactive layer in thin film tandem solar cells (TFTSCs). The current study introduces the design of all-antimony chalcogenide TFTSC comprised of an Sb2S3 (1.7 eV) front subcell and an Sb2Se3 (1.2 eV) rear subcell. The challenges to migrating from four-terminal (4-T) to two-terminal (2-T) designs are highlighted and possible solutions are proposed. To commence, a calibration procedure for the two subcells is conducted in alignment with experimental investigations. The benchmarked solar cells yield a power conversion efficiency (PCE) of 8.08 % for the upper subcell and 10.58 % for the lower subcell. Subsequently, upon integration of both subcells within the initial 4-T Sb2S3/Sb2Se3 TFTSC, the resultant PV cell attains a PCE of 12.27 %. Before transitioning it to a more efficient 2T tandem configuration, we explore alternative inorganic HTL materials to the Spiro-OMeTAD HTL to overcome its practical considerations. Cu2O is found to be the best HTL alternative to be included for both subcells. Upon stacking into the tandem structure, the combined cell exhibited an efficiency of 15.68 % and a notable Jsc of 16.23 mA/cm2. To further enhance the tandem performance, the device structure is optimized by engineering the CBO of two sub-cells and employing a double ETL design for the front sub-cell. At the considered current matching criterion, the tandem device PCE and Jsc are boosted to 27.86 % and 17.60 mA/cm2, respectively. Based on this full optoelectronic analysis, developed in the Silvaco TCAD environment, a 2-T all antimony chalcogenide tandem configuration can be realized and optimized, paving the way for future experimental endeavors.
期刊介绍:
in Shams Engineering Journal is an international journal devoted to publication of peer reviewed original high-quality research papers and review papers in both traditional topics and those of emerging science and technology. Areas of both theoretical and fundamental interest as well as those concerning industrial applications, emerging instrumental techniques and those which have some practical application to an aspect of human endeavor, such as the preservation of the environment, health, waste disposal are welcome. The overall focus is on original and rigorous scientific research results which have generic significance.
Ain Shams Engineering Journal focuses upon aspects of mechanical engineering, electrical engineering, civil engineering, chemical engineering, petroleum engineering, environmental engineering, architectural and urban planning engineering. Papers in which knowledge from other disciplines is integrated with engineering are especially welcome like nanotechnology, material sciences, and computational methods as well as applied basic sciences: engineering mathematics, physics and chemistry.