G. Satayanarayana Goud, Nakiraboina Venkatesh, D. Ravi Kumar, Syed Ismail Ahmad and P. Veerasomaiah
{"title":"掺杂 Co3+ 的 CdFe2O4 纳米粒子:结构、光学、磁学和电学特性","authors":"G. Satayanarayana Goud, Nakiraboina Venkatesh, D. Ravi Kumar, Syed Ismail Ahmad and P. Veerasomaiah","doi":"10.1149/2162-8777/ad5dfb","DOIUrl":null,"url":null,"abstract":"Through the citrate-gel auto-combustion technique, we synthesized Co-doped cadmium nano ferrites (NFs) with the formula CoxCd1−xFe2O4 (where 0 ≤ x ≤ 1.0 with increments of 0.2). The synthesized materials underwent comprehensive analysis utilizing X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy. Magnetic and electrical properties were evaluated using a vibrating sample magnetometer and LCR meter, respectively. XRD analysis confirmed the spinel phase structure and FD3M space group. SEM analysis revealed agglomerations of nanoparticles and grain boundaries. Elemental analysis of the synthesized nanomaterials was provided by energy dispersive spectroscopy. FTIR spectroscopy identified two main broad bands corresponding to the tetrahedral (A) and octahedral (B) sites, confirming the spinel structure. Magnetic properties such as magnetic saturation, coercivity, and remanent magnetization were characterized using VSM. Additionally, the LCR meter assessed frequency and temperature-dependent dielectric parameters, including AC conductivity (σAC), dielectric permittivity, dielectric loss (tan δ), and impedance spectra. An increase in AC conductivity (σAC) was observed with increasing temperature and frequency.","PeriodicalId":11496,"journal":{"name":"ECS Journal of Solid State Science and Technology","volume":"37 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Co3+ Doped CdFe2O4 Nanoparticles: Structural, Optical, Magnetic, and Electrical Properties\",\"authors\":\"G. Satayanarayana Goud, Nakiraboina Venkatesh, D. Ravi Kumar, Syed Ismail Ahmad and P. Veerasomaiah\",\"doi\":\"10.1149/2162-8777/ad5dfb\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Through the citrate-gel auto-combustion technique, we synthesized Co-doped cadmium nano ferrites (NFs) with the formula CoxCd1−xFe2O4 (where 0 ≤ x ≤ 1.0 with increments of 0.2). The synthesized materials underwent comprehensive analysis utilizing X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy. Magnetic and electrical properties were evaluated using a vibrating sample magnetometer and LCR meter, respectively. XRD analysis confirmed the spinel phase structure and FD3M space group. SEM analysis revealed agglomerations of nanoparticles and grain boundaries. Elemental analysis of the synthesized nanomaterials was provided by energy dispersive spectroscopy. FTIR spectroscopy identified two main broad bands corresponding to the tetrahedral (A) and octahedral (B) sites, confirming the spinel structure. Magnetic properties such as magnetic saturation, coercivity, and remanent magnetization were characterized using VSM. Additionally, the LCR meter assessed frequency and temperature-dependent dielectric parameters, including AC conductivity (σAC), dielectric permittivity, dielectric loss (tan δ), and impedance spectra. An increase in AC conductivity (σAC) was observed with increasing temperature and frequency.\",\"PeriodicalId\":11496,\"journal\":{\"name\":\"ECS Journal of Solid State Science and Technology\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECS Journal of Solid State Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1149/2162-8777/ad5dfb\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Journal of Solid State Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1149/2162-8777/ad5dfb","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
通过柠檬酸凝胶自动燃烧技术,我们合成了钴掺杂的纳米镉铁氧体(NFs),其化学式为 CoxCd1-xFe2O4(其中 0 ≤ x ≤ 1.0,增量为 0.2)。利用 X 射线衍射 (XRD)、扫描电子显微镜 (SEM)、傅立叶变换红外光谱 (FTIR) 和 X 射线光电子能谱对合成材料进行了全面分析。磁性和电性分别使用振动样品磁力计和 LCR 计进行了评估。XRD 分析证实了尖晶石相结构和 FD3M 空间群。扫描电镜分析显示了纳米颗粒的团聚和晶界。能谱仪对合成的纳米材料进行了元素分析。傅立叶变换红外光谱确定了与四面体(A)和八面体(B)位点相对应的两个主要宽带,证实了尖晶石结构。磁饱和度、矫顽力和剩磁等磁性能是用 VSM 表征的。此外,LCR 计还评估了频率和温度相关的介电参数,包括交流电导率(σAC)、介电常数、介电损耗(tan δ)和阻抗谱。观察到交流电导率(σAC)随着温度和频率的升高而增加。
Co3+ Doped CdFe2O4 Nanoparticles: Structural, Optical, Magnetic, and Electrical Properties
Through the citrate-gel auto-combustion technique, we synthesized Co-doped cadmium nano ferrites (NFs) with the formula CoxCd1−xFe2O4 (where 0 ≤ x ≤ 1.0 with increments of 0.2). The synthesized materials underwent comprehensive analysis utilizing X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy. Magnetic and electrical properties were evaluated using a vibrating sample magnetometer and LCR meter, respectively. XRD analysis confirmed the spinel phase structure and FD3M space group. SEM analysis revealed agglomerations of nanoparticles and grain boundaries. Elemental analysis of the synthesized nanomaterials was provided by energy dispersive spectroscopy. FTIR spectroscopy identified two main broad bands corresponding to the tetrahedral (A) and octahedral (B) sites, confirming the spinel structure. Magnetic properties such as magnetic saturation, coercivity, and remanent magnetization were characterized using VSM. Additionally, the LCR meter assessed frequency and temperature-dependent dielectric parameters, including AC conductivity (σAC), dielectric permittivity, dielectric loss (tan δ), and impedance spectra. An increase in AC conductivity (σAC) was observed with increasing temperature and frequency.
期刊介绍:
The ECS Journal of Solid State Science and Technology (JSS) was launched in 2012, and publishes outstanding research covering fundamental and applied areas of solid state science and technology, including experimental and theoretical aspects of the chemistry and physics of materials and devices.
JSS has five topical interest areas:
carbon nanostructures and devices
dielectric science and materials
electronic materials and processing
electronic and photonic devices and systems
luminescence and display materials, devices and processing.