{"title":"优化双材料无结树 FET 的器件尺寸:提高模拟/射频性能的途径","authors":"Divya Beebireddy, Kaleem Fatima, Nirmala Devi L.","doi":"10.1149/2162-8777/ad5c9e","DOIUrl":null,"url":null,"abstract":"This comprehensive study delves into the intricate analysis of the electrical and analog/RF performance of the Dual Material (DM) junctionless (JL) Tree-FET. During the optimization process, various DC and analog/RF metrics were taken into account. It is observed that, as the gate length decreases (12 nm to 8 nm), there is an increment in drain induced barrier lowering (DIBL), switching ratio (I<sub>on</sub>/I<sub>off</sub>), and subthreshold swing (SS). Conversely, reducing the size of T<sub>NS</sub> (and W<sub>NS</sub>) from 10 nm to 5 nm (and 20 nm to 10 nm, respectively) lead to notable improvements, with a 34.4% (21.01%) decrease in SS, 93.19% (58.86%) decrease in DIBL, and 98.6% (41.06%) increase in I<sub>on</sub>/I<sub>off</sub>. Furthermore, the analog/RF performance metrics of the device is carefully examined across dimensional variations, revealing significant improvements at the optimal values. Additionally, the study extends to the evaluation of inverter circuit characteristics with DM JL Tree-FET. Remarkably, the static noise margin (SNM) and delay exhibit 337.3 mV and 3.053 ps, respectively, positioning the device as a prime candidate for applications demanding low power consumption and high-frequency operation in future technology nodes.","PeriodicalId":11496,"journal":{"name":"ECS Journal of Solid State Science and Technology","volume":"17 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Device Dimensions for Dual Material Junctionless Tree-FET: A Path to Improved Analog/RF Performance\",\"authors\":\"Divya Beebireddy, Kaleem Fatima, Nirmala Devi L.\",\"doi\":\"10.1149/2162-8777/ad5c9e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This comprehensive study delves into the intricate analysis of the electrical and analog/RF performance of the Dual Material (DM) junctionless (JL) Tree-FET. During the optimization process, various DC and analog/RF metrics were taken into account. It is observed that, as the gate length decreases (12 nm to 8 nm), there is an increment in drain induced barrier lowering (DIBL), switching ratio (I<sub>on</sub>/I<sub>off</sub>), and subthreshold swing (SS). Conversely, reducing the size of T<sub>NS</sub> (and W<sub>NS</sub>) from 10 nm to 5 nm (and 20 nm to 10 nm, respectively) lead to notable improvements, with a 34.4% (21.01%) decrease in SS, 93.19% (58.86%) decrease in DIBL, and 98.6% (41.06%) increase in I<sub>on</sub>/I<sub>off</sub>. Furthermore, the analog/RF performance metrics of the device is carefully examined across dimensional variations, revealing significant improvements at the optimal values. Additionally, the study extends to the evaluation of inverter circuit characteristics with DM JL Tree-FET. Remarkably, the static noise margin (SNM) and delay exhibit 337.3 mV and 3.053 ps, respectively, positioning the device as a prime candidate for applications demanding low power consumption and high-frequency operation in future technology nodes.\",\"PeriodicalId\":11496,\"journal\":{\"name\":\"ECS Journal of Solid State Science and Technology\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECS Journal of Solid State Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1149/2162-8777/ad5c9e\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Journal of Solid State Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1149/2162-8777/ad5c9e","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Optimizing Device Dimensions for Dual Material Junctionless Tree-FET: A Path to Improved Analog/RF Performance
This comprehensive study delves into the intricate analysis of the electrical and analog/RF performance of the Dual Material (DM) junctionless (JL) Tree-FET. During the optimization process, various DC and analog/RF metrics were taken into account. It is observed that, as the gate length decreases (12 nm to 8 nm), there is an increment in drain induced barrier lowering (DIBL), switching ratio (Ion/Ioff), and subthreshold swing (SS). Conversely, reducing the size of TNS (and WNS) from 10 nm to 5 nm (and 20 nm to 10 nm, respectively) lead to notable improvements, with a 34.4% (21.01%) decrease in SS, 93.19% (58.86%) decrease in DIBL, and 98.6% (41.06%) increase in Ion/Ioff. Furthermore, the analog/RF performance metrics of the device is carefully examined across dimensional variations, revealing significant improvements at the optimal values. Additionally, the study extends to the evaluation of inverter circuit characteristics with DM JL Tree-FET. Remarkably, the static noise margin (SNM) and delay exhibit 337.3 mV and 3.053 ps, respectively, positioning the device as a prime candidate for applications demanding low power consumption and high-frequency operation in future technology nodes.
期刊介绍:
The ECS Journal of Solid State Science and Technology (JSS) was launched in 2012, and publishes outstanding research covering fundamental and applied areas of solid state science and technology, including experimental and theoretical aspects of the chemistry and physics of materials and devices.
JSS has five topical interest areas:
carbon nanostructures and devices
dielectric science and materials
electronic materials and processing
electronic and photonic devices and systems
luminescence and display materials, devices and processing.