艾森曼体积元素与伯格曼核在([公式省略]-)凸域上的几何估计值和可比性

IF 1.3 3区 数学 Q2 MATHEMATICS, APPLIED
{"title":"艾森曼体积元素与伯格曼核在([公式省略]-)凸域上的几何估计值和可比性","authors":"","doi":"10.1016/j.bulsci.2024.103467","DOIUrl":null,"url":null,"abstract":"<div><p>We establish geometric upper and lower estimates for the Carathéodory and Kobayashi-Eisenman volume elements on the class of non-degenerate convex domains, as well as on the more general class of non-degenerate <span><math><mi>C</mi></math></span>-convex domains. As a consequence, we obtain explicit universal lower bounds for the quotient invariant both on non-degenerate convex and <span><math><mi>C</mi></math></span>-convex domains. Here the bounds we derive, for the above mentioned classes in <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, only depend on the dimension <em>n</em> for a fixed <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>. Finally, it is shown that the Bergman kernel is comparable with these volume elements up to small/large constants depending only on <em>n</em>.</p></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"195 ","pages":"Article 103467"},"PeriodicalIF":1.3000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric estimates and comparability of Eisenman volume elements with the Bergman kernel on (C-)convex domains\",\"authors\":\"\",\"doi\":\"10.1016/j.bulsci.2024.103467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We establish geometric upper and lower estimates for the Carathéodory and Kobayashi-Eisenman volume elements on the class of non-degenerate convex domains, as well as on the more general class of non-degenerate <span><math><mi>C</mi></math></span>-convex domains. As a consequence, we obtain explicit universal lower bounds for the quotient invariant both on non-degenerate convex and <span><math><mi>C</mi></math></span>-convex domains. Here the bounds we derive, for the above mentioned classes in <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, only depend on the dimension <em>n</em> for a fixed <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>. Finally, it is shown that the Bergman kernel is comparable with these volume elements up to small/large constants depending only on <em>n</em>.</p></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"195 \",\"pages\":\"Article 103467\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S000744972400085X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000744972400085X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们为非退化凸域类以及更一般的非退化-凸域类的卡拉瑟奥多里和小林-艾森曼体积元素建立了几何上下限估计。因此,我们在非退化凸域和-凸域上都得到了商不变式的明确通用下界。在这里,对于上述类,我们得出的下界只取决于固定维数的 。最后,我们还证明了伯格曼核与这些体积元素的可比性,其小/大常数仅取决于.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric estimates and comparability of Eisenman volume elements with the Bergman kernel on (C-)convex domains

We establish geometric upper and lower estimates for the Carathéodory and Kobayashi-Eisenman volume elements on the class of non-degenerate convex domains, as well as on the more general class of non-degenerate C-convex domains. As a consequence, we obtain explicit universal lower bounds for the quotient invariant both on non-degenerate convex and C-convex domains. Here the bounds we derive, for the above mentioned classes in Cn, only depend on the dimension n for a fixed n2. Finally, it is shown that the Bergman kernel is comparable with these volume elements up to small/large constants depending only on n.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信