{"title":"艾森曼体积元素与伯格曼核在([公式省略]-)凸域上的几何估计值和可比性","authors":"","doi":"10.1016/j.bulsci.2024.103467","DOIUrl":null,"url":null,"abstract":"<div><p>We establish geometric upper and lower estimates for the Carathéodory and Kobayashi-Eisenman volume elements on the class of non-degenerate convex domains, as well as on the more general class of non-degenerate <span><math><mi>C</mi></math></span>-convex domains. As a consequence, we obtain explicit universal lower bounds for the quotient invariant both on non-degenerate convex and <span><math><mi>C</mi></math></span>-convex domains. Here the bounds we derive, for the above mentioned classes in <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, only depend on the dimension <em>n</em> for a fixed <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>. Finally, it is shown that the Bergman kernel is comparable with these volume elements up to small/large constants depending only on <em>n</em>.</p></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"195 ","pages":"Article 103467"},"PeriodicalIF":1.3000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric estimates and comparability of Eisenman volume elements with the Bergman kernel on (C-)convex domains\",\"authors\":\"\",\"doi\":\"10.1016/j.bulsci.2024.103467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We establish geometric upper and lower estimates for the Carathéodory and Kobayashi-Eisenman volume elements on the class of non-degenerate convex domains, as well as on the more general class of non-degenerate <span><math><mi>C</mi></math></span>-convex domains. As a consequence, we obtain explicit universal lower bounds for the quotient invariant both on non-degenerate convex and <span><math><mi>C</mi></math></span>-convex domains. Here the bounds we derive, for the above mentioned classes in <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, only depend on the dimension <em>n</em> for a fixed <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>. Finally, it is shown that the Bergman kernel is comparable with these volume elements up to small/large constants depending only on <em>n</em>.</p></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"195 \",\"pages\":\"Article 103467\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S000744972400085X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000744972400085X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Geometric estimates and comparability of Eisenman volume elements with the Bergman kernel on (C-)convex domains
We establish geometric upper and lower estimates for the Carathéodory and Kobayashi-Eisenman volume elements on the class of non-degenerate convex domains, as well as on the more general class of non-degenerate -convex domains. As a consequence, we obtain explicit universal lower bounds for the quotient invariant both on non-degenerate convex and -convex domains. Here the bounds we derive, for the above mentioned classes in , only depend on the dimension n for a fixed . Finally, it is shown that the Bergman kernel is comparable with these volume elements up to small/large constants depending only on n.