{"title":"n 符的哈代空间上的汉克尔和托普利兹算子的交换性","authors":"Raúl E. Curto , Gopal Datt , Bhawna Bansal Gupta","doi":"10.1016/j.bulsci.2024.103466","DOIUrl":null,"url":null,"abstract":"<div><p>We consider Hankel and Toeplitz operators on <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>, the Hardy space of the <em>n</em>-torus <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. Given symbols <em>φ</em> and <em>ψ</em> in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> with suitable properties, we obtain necessary and sufficient conditions for the Hankel operator <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>ψ</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> and the Toeplitz operator <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>φ</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> to commute. We then extend the study to the more general situation where no assumptions are imposed on <em>φ</em>, and provide new, non-trivial necessary conditions for the commutativity of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>ψ</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>φ</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span>. We also show that certain well known commutativity results between Hankel and Toeplitz operators in the one-variable case do not extend to the multivariable setting.</p></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"194 ","pages":"Article 103466"},"PeriodicalIF":1.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Commutativity of Hankel and Toeplitz operators on the Hardy space of the n-torus\",\"authors\":\"Raúl E. Curto , Gopal Datt , Bhawna Bansal Gupta\",\"doi\":\"10.1016/j.bulsci.2024.103466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider Hankel and Toeplitz operators on <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>, the Hardy space of the <em>n</em>-torus <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. Given symbols <em>φ</em> and <em>ψ</em> in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> with suitable properties, we obtain necessary and sufficient conditions for the Hankel operator <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>ψ</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> and the Toeplitz operator <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>φ</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> to commute. We then extend the study to the more general situation where no assumptions are imposed on <em>φ</em>, and provide new, non-trivial necessary conditions for the commutativity of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>ψ</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>φ</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span>. We also show that certain well known commutativity results between Hankel and Toeplitz operators in the one-variable case do not extend to the multivariable setting.</p></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"194 \",\"pages\":\"Article 103466\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007449724000848\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449724000848","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Commutativity of Hankel and Toeplitz operators on the Hardy space of the n-torus
We consider Hankel and Toeplitz operators on , the Hardy space of the n-torus . Given symbols φ and ψ in with suitable properties, we obtain necessary and sufficient conditions for the Hankel operator and the Toeplitz operator to commute. We then extend the study to the more general situation where no assumptions are imposed on φ, and provide new, non-trivial necessary conditions for the commutativity of and . We also show that certain well known commutativity results between Hankel and Toeplitz operators in the one-variable case do not extend to the multivariable setting.