{"title":"连续和离散广义齐格勒摆的混沌动力学","authors":"Stefano Disca, Vincenzo Coscia","doi":"10.1007/s11012-024-01848-5","DOIUrl":null,"url":null,"abstract":"<div><p>We present analytical and numerical results on integrability and transition to chaotic motion for a generalized Ziegler pendulum, a double pendulum subject to an angular elastic potential and a follower force. Several variants of the original dynamical system, including the presence of gravity and friction, are considered, in order to analyze whether the integrable cases are preserved or not in presence of further external forces, both potential and non-potential. Particular attention is devoted to the presence of dissipative forces, that are analyzed in two different formulations. Furthermore, a study of the discrete version is performed. The analysis of periodic points, that is presented up to period 3, suggests that the discrete map associated to the dynamical system has not dense sets of periodic points, so that the map would not be chaotic in the sense of Devaney for a choice of the parameters that corresponds to a general case of chaotic motion for the original system.</p></div>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":"59 7","pages":"1139 - 1157"},"PeriodicalIF":1.9000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11012-024-01848-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Chaotic dynamics of a continuous and discrete generalized Ziegler pendulum\",\"authors\":\"Stefano Disca, Vincenzo Coscia\",\"doi\":\"10.1007/s11012-024-01848-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present analytical and numerical results on integrability and transition to chaotic motion for a generalized Ziegler pendulum, a double pendulum subject to an angular elastic potential and a follower force. Several variants of the original dynamical system, including the presence of gravity and friction, are considered, in order to analyze whether the integrable cases are preserved or not in presence of further external forces, both potential and non-potential. Particular attention is devoted to the presence of dissipative forces, that are analyzed in two different formulations. Furthermore, a study of the discrete version is performed. The analysis of periodic points, that is presented up to period 3, suggests that the discrete map associated to the dynamical system has not dense sets of periodic points, so that the map would not be chaotic in the sense of Devaney for a choice of the parameters that corresponds to a general case of chaotic motion for the original system.</p></div>\",\"PeriodicalId\":695,\"journal\":{\"name\":\"Meccanica\",\"volume\":\"59 7\",\"pages\":\"1139 - 1157\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11012-024-01848-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meccanica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11012-024-01848-5\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meccanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11012-024-01848-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Chaotic dynamics of a continuous and discrete generalized Ziegler pendulum
We present analytical and numerical results on integrability and transition to chaotic motion for a generalized Ziegler pendulum, a double pendulum subject to an angular elastic potential and a follower force. Several variants of the original dynamical system, including the presence of gravity and friction, are considered, in order to analyze whether the integrable cases are preserved or not in presence of further external forces, both potential and non-potential. Particular attention is devoted to the presence of dissipative forces, that are analyzed in two different formulations. Furthermore, a study of the discrete version is performed. The analysis of periodic points, that is presented up to period 3, suggests that the discrete map associated to the dynamical system has not dense sets of periodic points, so that the map would not be chaotic in the sense of Devaney for a choice of the parameters that corresponds to a general case of chaotic motion for the original system.
期刊介绍:
Meccanica focuses on the methodological framework shared by mechanical scientists when addressing theoretical or applied problems. Original papers address various aspects of mechanical and mathematical modeling, of solution, as well as of analysis of system behavior. The journal explores fundamental and applications issues in established areas of mechanics research as well as in emerging fields; contemporary research on general mechanics, solid and structural mechanics, fluid mechanics, and mechanics of machines; interdisciplinary fields between mechanics and other mathematical and engineering sciences; interaction of mechanics with dynamical systems, advanced materials, control and computation; electromechanics; biomechanics.
Articles include full length papers; topical overviews; brief notes; discussions and comments on published papers; book reviews; and an international calendar of conferences.
Meccanica, the official journal of the Italian Association of Theoretical and Applied Mechanics, was established in 1966.