时变各向异性介质的复杂金兹堡-朗道方程

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Robert A. Van Gorder
{"title":"时变各向异性介质的复杂金兹堡-朗道方程","authors":"Robert A. Van Gorder","doi":"10.1111/sapm.12730","DOIUrl":null,"url":null,"abstract":"<p>When extending the complex Ginzburg–Landau equation (CGLE) to more than one spatial dimension, there is an underlying question of whether one is capturing all the interesting physics inherent in these higher dimensions. Although spatial anisotropy is far less studied than its isotropic counterpart, anisotropy is fundamental in applications to superconductors, plasma physics, and geology, to name just a few examples. We first formulate the CGLE on anisotropic, time-varying media, with this time variation permitting a degree of control of the anisotropy over time, focusing on how time-varying anisotropy influences diffusion and dispersion within both bounded and unbounded space domains. From here, we construct a variety of exact dissipative nonlinear wave solutions, including analogs of wavetrains, solitons, breathers, and rogue waves, before outlining the construction of more general solutions via a dissipative, nonautonomous generalization of the variational method. We finally consider the problem of modulational instability within anisotropic, time-varying media, obtaining generalizations to the Benjamin–Feir instability mechanism. We apply this framework to study the emergence and control of anisotropic spatiotemporal chaos in rectangular and curved domains. Our theoretical framework and specific solutions all point to time-varying anisotropy being a potentially valuable feature for the manipulation and control of waves in anisotropic media.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.12730","citationCount":"0","resultStr":"{\"title\":\"Complex Ginzburg–Landau equation for time-varying anisotropic media\",\"authors\":\"Robert A. Van Gorder\",\"doi\":\"10.1111/sapm.12730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>When extending the complex Ginzburg–Landau equation (CGLE) to more than one spatial dimension, there is an underlying question of whether one is capturing all the interesting physics inherent in these higher dimensions. Although spatial anisotropy is far less studied than its isotropic counterpart, anisotropy is fundamental in applications to superconductors, plasma physics, and geology, to name just a few examples. We first formulate the CGLE on anisotropic, time-varying media, with this time variation permitting a degree of control of the anisotropy over time, focusing on how time-varying anisotropy influences diffusion and dispersion within both bounded and unbounded space domains. From here, we construct a variety of exact dissipative nonlinear wave solutions, including analogs of wavetrains, solitons, breathers, and rogue waves, before outlining the construction of more general solutions via a dissipative, nonautonomous generalization of the variational method. We finally consider the problem of modulational instability within anisotropic, time-varying media, obtaining generalizations to the Benjamin–Feir instability mechanism. We apply this framework to study the emergence and control of anisotropic spatiotemporal chaos in rectangular and curved domains. Our theoretical framework and specific solutions all point to time-varying anisotropy being a potentially valuable feature for the manipulation and control of waves in anisotropic media.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.12730\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12730\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

当把复杂金兹堡-朗道方程(CGLE)扩展到一个以上的空间维度时,一个潜在的问题是,我们是否捕捉到了这些更高维度中固有的所有有趣物理现象。虽然对空间各向异性的研究远远少于对其各向同性的研究,但各向异性在超导体、等离子体物理和地质学等应用中具有重要意义,这里仅举几个例子。我们首先提出了各向异性时变介质的 CGLE,这种时变允许在一定程度上控制各向异性随时间的变化,重点是时变各向异性如何影响有界和无界空间域内的扩散和弥散。在此基础上,我们构建了各种精确的耗散非线性波解,包括波迹、孤子、呼吸波和流氓波的类似物,然后概述了通过耗散、非自主的变分法广义构建更一般解的方法。最后,我们考虑了各向异性时变介质中的调制不稳定性问题,获得了对本杰明-费尔不稳定性机制的概括。我们将这一框架用于研究矩形域和曲面域中各向异性时空混沌的出现和控制。我们的理论框架和具体解决方案都表明,时变各向异性是在各向异性介质中操纵和控制波的潜在重要特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Complex Ginzburg–Landau equation for time-varying anisotropic media

Complex Ginzburg–Landau equation for time-varying anisotropic media

When extending the complex Ginzburg–Landau equation (CGLE) to more than one spatial dimension, there is an underlying question of whether one is capturing all the interesting physics inherent in these higher dimensions. Although spatial anisotropy is far less studied than its isotropic counterpart, anisotropy is fundamental in applications to superconductors, plasma physics, and geology, to name just a few examples. We first formulate the CGLE on anisotropic, time-varying media, with this time variation permitting a degree of control of the anisotropy over time, focusing on how time-varying anisotropy influences diffusion and dispersion within both bounded and unbounded space domains. From here, we construct a variety of exact dissipative nonlinear wave solutions, including analogs of wavetrains, solitons, breathers, and rogue waves, before outlining the construction of more general solutions via a dissipative, nonautonomous generalization of the variational method. We finally consider the problem of modulational instability within anisotropic, time-varying media, obtaining generalizations to the Benjamin–Feir instability mechanism. We apply this framework to study the emergence and control of anisotropic spatiotemporal chaos in rectangular and curved domains. Our theoretical framework and specific solutions all point to time-varying anisotropy being a potentially valuable feature for the manipulation and control of waves in anisotropic media.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信