具有高阶非线性的反应扩散方程的第一过渡动力学

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Taylan Şengül, Burhan Tiryakioglu, Esmanur Yıldız Akıl
{"title":"具有高阶非线性的反应扩散方程的第一过渡动力学","authors":"Taylan Şengül,&nbsp;Burhan Tiryakioglu,&nbsp;Esmanur Yıldız Akıl","doi":"10.1111/sapm.12735","DOIUrl":null,"url":null,"abstract":"<p>In this study, the dynamics of a reaction–diffusion equation on a bounded interval at the first dynamic transition point is investigated. The main difference of this study from the existing ones in the dynamic transition literature is that in this work, no specific form of the nonlinear operator is assumed except that it is an analytic function of <span></span><math>\n <semantics>\n <mi>u</mi>\n <annotation>$u$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mi>u</mi>\n <mi>x</mi>\n </msub>\n <annotation>$u_x$</annotation>\n </semantics></math>. The linear operator is also assumed to be a general operator with sinusoidal eigenvectors. Moreover, we assume that there is a first transition as a real simple eigenvalue changes sign. With this general framework, we make a rigorous analysis of the dependence of the first transition dynamics on the coefficients of the Taylor expansion of the nonlinear operator. The main tool we use in this study is the center manifold reduction combined with the classification of the dynamic transition theory. This study is a generalization of a recent work where the nonlinear operator contains only low-order (quadratic and cubic) nonlinearities. The current generalization requires certain technical difficulties such as the validity of the genericity conditions on the Taylor coefficients of the nonlinear operator and a bootstrapping argument using these genericity conditions. The results of this work can be generalized in various directions, which are discussed in the conclusions section.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.12735","citationCount":"0","resultStr":"{\"title\":\"First transition dynamics of reaction–diffusion equations with higher order nonlinearity\",\"authors\":\"Taylan Şengül,&nbsp;Burhan Tiryakioglu,&nbsp;Esmanur Yıldız Akıl\",\"doi\":\"10.1111/sapm.12735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, the dynamics of a reaction–diffusion equation on a bounded interval at the first dynamic transition point is investigated. The main difference of this study from the existing ones in the dynamic transition literature is that in this work, no specific form of the nonlinear operator is assumed except that it is an analytic function of <span></span><math>\\n <semantics>\\n <mi>u</mi>\\n <annotation>$u$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <msub>\\n <mi>u</mi>\\n <mi>x</mi>\\n </msub>\\n <annotation>$u_x$</annotation>\\n </semantics></math>. The linear operator is also assumed to be a general operator with sinusoidal eigenvectors. Moreover, we assume that there is a first transition as a real simple eigenvalue changes sign. With this general framework, we make a rigorous analysis of the dependence of the first transition dynamics on the coefficients of the Taylor expansion of the nonlinear operator. The main tool we use in this study is the center manifold reduction combined with the classification of the dynamic transition theory. This study is a generalization of a recent work where the nonlinear operator contains only low-order (quadratic and cubic) nonlinearities. The current generalization requires certain technical difficulties such as the validity of the genericity conditions on the Taylor coefficients of the nonlinear operator and a bootstrapping argument using these genericity conditions. The results of this work can be generalized in various directions, which are discussed in the conclusions section.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.12735\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12735\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了反应扩散方程在第一个动态转换点处的有界区间上的动力学问题。本研究与动态过渡文献中现有研究的主要区别在于,在本研究中,除了假定非线性算子是 和 的解析函数外,没有假定非线性算子的具体形式。线性算子也被假定为具有正弦特征向量的一般算子。此外,我们还假定,当实际简单特征值改变符号时,会出现第一次转换。在这一总体框架下,我们对第一次过渡动力学与非线性算子泰勒展开系数的关系进行了严格分析。我们在这项研究中使用的主要工具是中心流形还原与动态过渡理论分类相结合。这项研究是对最近一项工作的推广,在这项工作中,非线性算子只包含低阶(二次和三次)非线性。目前的推广需要解决一些技术难题,如非线性算子泰勒系数的通性条件的有效性,以及使用这些通性条件的引导论证。这项工作的结果可以向多个方向推广,结论部分将对此进行讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
First transition dynamics of reaction–diffusion equations with higher order nonlinearity

In this study, the dynamics of a reaction–diffusion equation on a bounded interval at the first dynamic transition point is investigated. The main difference of this study from the existing ones in the dynamic transition literature is that in this work, no specific form of the nonlinear operator is assumed except that it is an analytic function of u $u$ and u x $u_x$ . The linear operator is also assumed to be a general operator with sinusoidal eigenvectors. Moreover, we assume that there is a first transition as a real simple eigenvalue changes sign. With this general framework, we make a rigorous analysis of the dependence of the first transition dynamics on the coefficients of the Taylor expansion of the nonlinear operator. The main tool we use in this study is the center manifold reduction combined with the classification of the dynamic transition theory. This study is a generalization of a recent work where the nonlinear operator contains only low-order (quadratic and cubic) nonlinearities. The current generalization requires certain technical difficulties such as the validity of the genericity conditions on the Taylor coefficients of the nonlinear operator and a bootstrapping argument using these genericity conditions. The results of this work can be generalized in various directions, which are discussed in the conclusions section.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信