状态合并对概率树自动机预测准确性的影响:迪茨猜想再探讨

IF 1.1 3区 计算机科学 Q1 BUSINESS, FINANCE
{"title":"状态合并对概率树自动机预测准确性的影响:迪茨猜想再探讨","authors":"","doi":"10.1016/j.jcss.2024.103563","DOIUrl":null,"url":null,"abstract":"<div><p>Dietze's conjecture concerns the problem of equipping a tree automaton <em>M</em> with weights to make it probabilistic, in such a way that the resulting automaton <em>N</em> predicts a given corpus <span><math><mi>C</mi></math></span> as accurately as possible. The conjecture states that the accuracy cannot increase if the states in <em>M</em> are merged with respect to an equivalence relation ∼ so that the result is a smaller automaton <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>∼</mo></mrow></msup></math></span>. Put differently, merging states can never improve predictions. This is under the assumption that both <em>M</em> and <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>∼</mo></mrow></msup></math></span> are bottom-up deterministic and accept every tree in <span><math><mi>C</mi></math></span>. We prove that the conjecture holds, using a construction that turns any probabilistic version <span><math><msup><mrow><mi>N</mi></mrow><mrow><mo>∼</mo></mrow></msup></math></span> of <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>∼</mo></mrow></msup></math></span> into a probabilistic version <em>N</em> of <em>M</em>, such that <em>N</em> assigns at least as great a weight to each tree in <span><math><mi>C</mi></math></span> as <span><math><msup><mrow><mi>N</mi></mrow><mrow><mo>∼</mo></mrow></msup></math></span> does.</p></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"146 ","pages":"Article 103563"},"PeriodicalIF":1.1000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022000024000588/pdfft?md5=9e1c1d599bbcfc040fd29b857c6c21e8&pid=1-s2.0-S0022000024000588-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The impact of state merging on predictive accuracy in probabilistic tree automata: Dietze's conjecture revisited\",\"authors\":\"\",\"doi\":\"10.1016/j.jcss.2024.103563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Dietze's conjecture concerns the problem of equipping a tree automaton <em>M</em> with weights to make it probabilistic, in such a way that the resulting automaton <em>N</em> predicts a given corpus <span><math><mi>C</mi></math></span> as accurately as possible. The conjecture states that the accuracy cannot increase if the states in <em>M</em> are merged with respect to an equivalence relation ∼ so that the result is a smaller automaton <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>∼</mo></mrow></msup></math></span>. Put differently, merging states can never improve predictions. This is under the assumption that both <em>M</em> and <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>∼</mo></mrow></msup></math></span> are bottom-up deterministic and accept every tree in <span><math><mi>C</mi></math></span>. We prove that the conjecture holds, using a construction that turns any probabilistic version <span><math><msup><mrow><mi>N</mi></mrow><mrow><mo>∼</mo></mrow></msup></math></span> of <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>∼</mo></mrow></msup></math></span> into a probabilistic version <em>N</em> of <em>M</em>, such that <em>N</em> assigns at least as great a weight to each tree in <span><math><mi>C</mi></math></span> as <span><math><msup><mrow><mi>N</mi></mrow><mrow><mo>∼</mo></mrow></msup></math></span> does.</p></div>\",\"PeriodicalId\":50224,\"journal\":{\"name\":\"Journal of Computer and System Sciences\",\"volume\":\"146 \",\"pages\":\"Article 103563\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022000024000588/pdfft?md5=9e1c1d599bbcfc040fd29b857c6c21e8&pid=1-s2.0-S0022000024000588-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer and System Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022000024000588\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000024000588","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

迪茨猜想涉及的问题是为树状自动机 M 添加权重,使其具有概率性,从而使由此产生的自动机 N 能尽可能准确地预测给定语料 C。该猜想指出,如果根据等价关系 ∼ 合并 M 中的状态,从而得到一个更小的自动机 M∼,那么准确度就不会提高。换句话说,合并状态永远无法改善预测结果。我们使用一种构造证明猜想成立,这种构造将 M∼ 的任何概率版本 N 转变成 M 的概率版本 N,使得 N 对 C 中每棵树赋予的权重至少与 N 一样大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The impact of state merging on predictive accuracy in probabilistic tree automata: Dietze's conjecture revisited

Dietze's conjecture concerns the problem of equipping a tree automaton M with weights to make it probabilistic, in such a way that the resulting automaton N predicts a given corpus C as accurately as possible. The conjecture states that the accuracy cannot increase if the states in M are merged with respect to an equivalence relation ∼ so that the result is a smaller automaton M. Put differently, merging states can never improve predictions. This is under the assumption that both M and M are bottom-up deterministic and accept every tree in C. We prove that the conjecture holds, using a construction that turns any probabilistic version N of M into a probabilistic version N of M, such that N assigns at least as great a weight to each tree in C as N does.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computer and System Sciences
Journal of Computer and System Sciences 工程技术-计算机:理论方法
CiteScore
3.70
自引率
0.00%
发文量
58
审稿时长
68 days
期刊介绍: The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions. Research areas include traditional subjects such as: • Theory of algorithms and computability • Formal languages • Automata theory Contemporary subjects such as: • Complexity theory • Algorithmic Complexity • Parallel & distributed computing • Computer networks • Neural networks • Computational learning theory • Database theory & practice • Computer modeling of complex systems • Security and Privacy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信