Usman A. Zahidi, Arshad Khan, Tsvetan Zhivkov, Johann Dichtl, Dom Li, Soran Parsa, Marc Hanheide, Grzegorz Cielniak, Elizabeth I. Sklar, Simon Pearson, Amir Ghalamzan-E.
{"title":"通过 5G 网络的边缘计算优化机器人运行速度:选择性收割机器人的启示","authors":"Usman A. Zahidi, Arshad Khan, Tsvetan Zhivkov, Johann Dichtl, Dom Li, Soran Parsa, Marc Hanheide, Grzegorz Cielniak, Elizabeth I. Sklar, Simon Pearson, Amir Ghalamzan-E.","doi":"10.1002/rob.22384","DOIUrl":null,"url":null,"abstract":"<p>Selective harvesting by autonomous robots will be a critical enabling technology for future farming. Increases in inflation and shortages of skilled labor are driving factors that can help encourage user acceptability of robotic harvesting. For example, robotic strawberry harvesting requires real-time high-precision fruit localization, three-dimensional (3D) mapping, and path planning for 3D cluster manipulation. Whilst industry and academia have developed multiple strawberry harvesting robots, none have yet achieved human–cost parity. Achieving this goal requires increased picking speed (perception, control, and movement), accuracy, and the development of low-cost robotic system designs. We propose the <i>edge-server over 5G for Selective Harvesting</i> (E5SH) system, which is an integration of high bandwidth and low latency <i>Fifth-Generation</i> (5G) mobile network into a crop harvesting robotic platform, which we view as an enabler for future robotic harvesting systems. We also consider processing scale and speed in conjunction with system environmental and energy costs. A system architecture is presented and evaluated with support from quantitative results from a series of experiments that compare the performance of the system in response to different architecture choices, including image segmentation models, network infrastructure (5G vs. Wireless Fidelity), and messaging protocols, such as <i>Message Queuing Telemetry Transport</i> and <i>Transport Control Protocol Robot Operating System</i>. Our results demonstrate that the E5SH system delivers step-change peak processing performance speedup of above 18-fold than a standalone embedded computing Nvidia Jetson Xavier NX system.</p>","PeriodicalId":192,"journal":{"name":"Journal of Field Robotics","volume":"41 8","pages":"2771-2789"},"PeriodicalIF":4.2000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/rob.22384","citationCount":"0","resultStr":"{\"title\":\"Optimising robotic operation speed with edge computing via 5G network: Insights from selective harvesting robots\",\"authors\":\"Usman A. Zahidi, Arshad Khan, Tsvetan Zhivkov, Johann Dichtl, Dom Li, Soran Parsa, Marc Hanheide, Grzegorz Cielniak, Elizabeth I. Sklar, Simon Pearson, Amir Ghalamzan-E.\",\"doi\":\"10.1002/rob.22384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Selective harvesting by autonomous robots will be a critical enabling technology for future farming. Increases in inflation and shortages of skilled labor are driving factors that can help encourage user acceptability of robotic harvesting. For example, robotic strawberry harvesting requires real-time high-precision fruit localization, three-dimensional (3D) mapping, and path planning for 3D cluster manipulation. Whilst industry and academia have developed multiple strawberry harvesting robots, none have yet achieved human–cost parity. Achieving this goal requires increased picking speed (perception, control, and movement), accuracy, and the development of low-cost robotic system designs. We propose the <i>edge-server over 5G for Selective Harvesting</i> (E5SH) system, which is an integration of high bandwidth and low latency <i>Fifth-Generation</i> (5G) mobile network into a crop harvesting robotic platform, which we view as an enabler for future robotic harvesting systems. We also consider processing scale and speed in conjunction with system environmental and energy costs. A system architecture is presented and evaluated with support from quantitative results from a series of experiments that compare the performance of the system in response to different architecture choices, including image segmentation models, network infrastructure (5G vs. Wireless Fidelity), and messaging protocols, such as <i>Message Queuing Telemetry Transport</i> and <i>Transport Control Protocol Robot Operating System</i>. Our results demonstrate that the E5SH system delivers step-change peak processing performance speedup of above 18-fold than a standalone embedded computing Nvidia Jetson Xavier NX system.</p>\",\"PeriodicalId\":192,\"journal\":{\"name\":\"Journal of Field Robotics\",\"volume\":\"41 8\",\"pages\":\"2771-2789\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/rob.22384\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Field Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/rob.22384\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Field Robotics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rob.22384","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
Optimising robotic operation speed with edge computing via 5G network: Insights from selective harvesting robots
Selective harvesting by autonomous robots will be a critical enabling technology for future farming. Increases in inflation and shortages of skilled labor are driving factors that can help encourage user acceptability of robotic harvesting. For example, robotic strawberry harvesting requires real-time high-precision fruit localization, three-dimensional (3D) mapping, and path planning for 3D cluster manipulation. Whilst industry and academia have developed multiple strawberry harvesting robots, none have yet achieved human–cost parity. Achieving this goal requires increased picking speed (perception, control, and movement), accuracy, and the development of low-cost robotic system designs. We propose the edge-server over 5G for Selective Harvesting (E5SH) system, which is an integration of high bandwidth and low latency Fifth-Generation (5G) mobile network into a crop harvesting robotic platform, which we view as an enabler for future robotic harvesting systems. We also consider processing scale and speed in conjunction with system environmental and energy costs. A system architecture is presented and evaluated with support from quantitative results from a series of experiments that compare the performance of the system in response to different architecture choices, including image segmentation models, network infrastructure (5G vs. Wireless Fidelity), and messaging protocols, such as Message Queuing Telemetry Transport and Transport Control Protocol Robot Operating System. Our results demonstrate that the E5SH system delivers step-change peak processing performance speedup of above 18-fold than a standalone embedded computing Nvidia Jetson Xavier NX system.
期刊介绍:
The Journal of Field Robotics seeks to promote scholarly publications dealing with the fundamentals of robotics in unstructured and dynamic environments.
The Journal focuses on experimental robotics and encourages publication of work that has both theoretical and practical significance.