随机重置对惯性随机过程平交道口计数的影响

IF 2.4 3区 物理与天体物理 Q1 Mathematics
Miquel Montero, Matteo Palassini, Jaume Masoliver
{"title":"随机重置对惯性随机过程平交道口计数的影响","authors":"Miquel Montero, Matteo Palassini, Jaume Masoliver","doi":"10.1103/physreve.110.014116","DOIUrl":null,"url":null,"abstract":"We study the counting of level crossings for inertial random processes exposed to stochastic resetting events. We develop the general approach of stochastic resetting for inertial processes with sudden changes in the state characterized by position and velocity. We obtain the level-crossing intensity in terms of that of underlying reset-free process for resetting events with Poissonian statistics. We apply this result to the random acceleration process and the inertial Brownian motion. In both cases, we show that there is an optimal resetting rate that maximizes the crossing intensity, and we obtain the asymptotic behavior of the crossing intensity for large and small resetting rates. Finally, we discuss the stationary distribution and the mean first-arrival time in the presence of resettings.","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of stochastic resettings on the counting of level crossings for inertial random processes\",\"authors\":\"Miquel Montero, Matteo Palassini, Jaume Masoliver\",\"doi\":\"10.1103/physreve.110.014116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the counting of level crossings for inertial random processes exposed to stochastic resetting events. We develop the general approach of stochastic resetting for inertial processes with sudden changes in the state characterized by position and velocity. We obtain the level-crossing intensity in terms of that of underlying reset-free process for resetting events with Poissonian statistics. We apply this result to the random acceleration process and the inertial Brownian motion. In both cases, we show that there is an optimal resetting rate that maximizes the crossing intensity, and we obtain the asymptotic behavior of the crossing intensity for large and small resetting rates. Finally, we discuss the stationary distribution and the mean first-arrival time in the presence of resettings.\",\"PeriodicalId\":20085,\"journal\":{\"name\":\"Physical review. E\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreve.110.014116\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreve.110.014116","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了受到随机重置事件影响的惯性随机过程的水平交叉计数。我们针对惯性过程的位置和速度状态突变,提出了随机重置的一般方法。我们得到了具有泊松统计量的重置事件的无重置基础过程的水平交叉强度。我们将这一结果应用于随机加速过程和惯性布朗运动。在这两种情况下,我们都证明了存在一个最优重置率,它能使越级强度最大化,我们还得到了越级强度在大重置率和小重置率下的渐近行为。最后,我们讨论了重置情况下的静态分布和平均首次到达时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of stochastic resettings on the counting of level crossings for inertial random processes

Effect of stochastic resettings on the counting of level crossings for inertial random processes
We study the counting of level crossings for inertial random processes exposed to stochastic resetting events. We develop the general approach of stochastic resetting for inertial processes with sudden changes in the state characterized by position and velocity. We obtain the level-crossing intensity in terms of that of underlying reset-free process for resetting events with Poissonian statistics. We apply this result to the random acceleration process and the inertial Brownian motion. In both cases, we show that there is an optimal resetting rate that maximizes the crossing intensity, and we obtain the asymptotic behavior of the crossing intensity for large and small resetting rates. Finally, we discuss the stationary distribution and the mean first-arrival time in the presence of resettings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical review. E
Physical review. E 物理-物理:流体与等离子体
CiteScore
4.60
自引率
16.70%
发文量
0
审稿时长
3.3 months
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信