当 p 接近 1 时 p 拉普拉斯算子的高罗宾特征值

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
José C. Sabina de Lis, Sergio Segura de León
{"title":"当 p 接近 1 时 p 拉普拉斯算子的高罗宾特征值","authors":"José C. Sabina de Lis, Sergio Segura de León","doi":"10.1007/s00526-024-02769-7","DOIUrl":null,"url":null,"abstract":"<p>This work addresses several aspects of the dependence on <i>p</i> of the higher eigenvalues <span>\\(\\lambda _n\\)</span> to the Robin problem,\n</p><span>$$\\begin{aligned} {\\left\\{ \\begin{array}{ll} -\\Delta _p u = \\lambda |u|^{p-2}u &amp;{} \\qquad x\\in \\Omega ,\\\\ \\ |\\nabla u|^{p-2}\\dfrac{\\partial u}{\\partial \\nu }+ b |u|^{p-2}u= 0&amp;{}\\qquad x\\in \\partial \\Omega . \\end{array}\\right. } \\end{aligned}$$</span><p>Here, <span>\\(\\Omega \\subset {{\\mathbb {R}}}^N\\)</span> is a <span>\\(C^1\\)</span> bounded domain, <span>\\(\\nu \\)</span> is the outer unit normal, <span>\\(\\Delta _p u = \\text {div}\\ (|\\nabla u|^{p-2}\\nabla u)\\)</span> stands for the <i>p</i>-Laplacian operator and <span>\\(b\\in L^\\infty (\\partial \\Omega )\\)</span>. Main results concern: (a) the existence of the limits of <span>\\(\\lambda _n\\)</span> as <span>\\(p\\rightarrow 1\\)</span>, (b) the ‘limit problems’ satisfied by the ‘limit eigenpairs’, (c) the continuous dependence of <span>\\(\\lambda _n\\)</span> on <i>p</i> when <span>\\(1&lt; p &lt;\\infty \\)</span> and (d) the limit profile of the eigenfunctions as <span>\\(p\\rightarrow 1\\)</span>. The latter study is performed in the one dimensional and radially symmetric cases. Corresponding properties on the Dirichlet and Neumann eigenvalues are also studied in these two special scenarios.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higher Robin eigenvalues for the p-Laplacian operator as p approaches 1\",\"authors\":\"José C. Sabina de Lis, Sergio Segura de León\",\"doi\":\"10.1007/s00526-024-02769-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work addresses several aspects of the dependence on <i>p</i> of the higher eigenvalues <span>\\\\(\\\\lambda _n\\\\)</span> to the Robin problem,\\n</p><span>$$\\\\begin{aligned} {\\\\left\\\\{ \\\\begin{array}{ll} -\\\\Delta _p u = \\\\lambda |u|^{p-2}u &amp;{} \\\\qquad x\\\\in \\\\Omega ,\\\\\\\\ \\\\ |\\\\nabla u|^{p-2}\\\\dfrac{\\\\partial u}{\\\\partial \\\\nu }+ b |u|^{p-2}u= 0&amp;{}\\\\qquad x\\\\in \\\\partial \\\\Omega . \\\\end{array}\\\\right. } \\\\end{aligned}$$</span><p>Here, <span>\\\\(\\\\Omega \\\\subset {{\\\\mathbb {R}}}^N\\\\)</span> is a <span>\\\\(C^1\\\\)</span> bounded domain, <span>\\\\(\\\\nu \\\\)</span> is the outer unit normal, <span>\\\\(\\\\Delta _p u = \\\\text {div}\\\\ (|\\\\nabla u|^{p-2}\\\\nabla u)\\\\)</span> stands for the <i>p</i>-Laplacian operator and <span>\\\\(b\\\\in L^\\\\infty (\\\\partial \\\\Omega )\\\\)</span>. Main results concern: (a) the existence of the limits of <span>\\\\(\\\\lambda _n\\\\)</span> as <span>\\\\(p\\\\rightarrow 1\\\\)</span>, (b) the ‘limit problems’ satisfied by the ‘limit eigenpairs’, (c) the continuous dependence of <span>\\\\(\\\\lambda _n\\\\)</span> on <i>p</i> when <span>\\\\(1&lt; p &lt;\\\\infty \\\\)</span> and (d) the limit profile of the eigenfunctions as <span>\\\\(p\\\\rightarrow 1\\\\)</span>. The latter study is performed in the one dimensional and radially symmetric cases. Corresponding properties on the Dirichlet and Neumann eigenvalues are also studied in these two special scenarios.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00526-024-02769-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02769-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

这项工作解决了罗宾问题的高特征值\(\lambda _n\)对p的依赖性的几个方面,$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta _p u = \lambda |u|^{p-2}u &{}\qquad x\in \Omega ,\\ |\nabla u|^{p-2}\dfrac{partial u}{\partial \nu }。\qquad x\in \Omega ,\ |\nabla u|^{p-2}dfrac\{partial u}{partial \nu }+ b |u|^{p-2}u= 0&{}\qquad x\in \partial \Omega .\end{array}\right.}\end{aligned}$$在这里,(Omega子集{{mathbb {R}}^N\) 是一个(C^1\)有界域,(\nu \)是外单位法线、\(\Delta _p u = \text {div}\(|\nabla u|^{p-2}\nabla u)\)代表p-拉普拉斯算子,\(b\in L^infty (\partial \Omega )\).主要结果涉及:(a) \(p\rightarrow 1\) 时 \(\lambda_n\)极限的存在,(b) '极限特征对'满足的'极限问题',(c) \(1< p <\infty \)时 \(\lambda_n\)对 p 的连续依赖性,(d) \(p\rightarrow 1\) 时特征函数的极限轮廓。后一种研究是在一维和径向对称的情况下进行的。在这两种特殊情况下,还研究了 Dirichlet 和 Neumann 特征值的相应性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Higher Robin eigenvalues for the p-Laplacian operator as p approaches 1

Higher Robin eigenvalues for the p-Laplacian operator as p approaches 1

This work addresses several aspects of the dependence on p of the higher eigenvalues \(\lambda _n\) to the Robin problem,

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta _p u = \lambda |u|^{p-2}u &{} \qquad x\in \Omega ,\\ \ |\nabla u|^{p-2}\dfrac{\partial u}{\partial \nu }+ b |u|^{p-2}u= 0&{}\qquad x\in \partial \Omega . \end{array}\right. } \end{aligned}$$

Here, \(\Omega \subset {{\mathbb {R}}}^N\) is a \(C^1\) bounded domain, \(\nu \) is the outer unit normal, \(\Delta _p u = \text {div}\ (|\nabla u|^{p-2}\nabla u)\) stands for the p-Laplacian operator and \(b\in L^\infty (\partial \Omega )\). Main results concern: (a) the existence of the limits of \(\lambda _n\) as \(p\rightarrow 1\), (b) the ‘limit problems’ satisfied by the ‘limit eigenpairs’, (c) the continuous dependence of \(\lambda _n\) on p when \(1< p <\infty \) and (d) the limit profile of the eigenfunctions as \(p\rightarrow 1\). The latter study is performed in the one dimensional and radially symmetric cases. Corresponding properties on the Dirichlet and Neumann eigenvalues are also studied in these two special scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信