{"title":"具有导数非线性的非线性薛定谔方程系统的变量问题","authors":"Hiroyuki Hirayama, Masahiro Ikeda","doi":"10.1007/s00526-024-02782-w","DOIUrl":null,"url":null,"abstract":"<p>We consider the Cauchy problem of the system of nonlinear Schrödinger equations with derivative nonlinearlity. This system was introduced by Colin and Colin (Differ Int Equ 17:297–330, 2004) as a model of laser-plasma interactions. We study existence of ground state solutions and the global well-posedness of this system by using the variational methods. We also consider the stability of traveling waves for this system. These problems are proposed by Colin–Colin as the open problems. We give a subset of the ground-states set which satisfies the condition of stability. In particular, we prove the stability of the set of traveling waves with small speed for 1-dimension.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variational problems for the system of nonlinear Schrödinger equations with derivative nonlinearities\",\"authors\":\"Hiroyuki Hirayama, Masahiro Ikeda\",\"doi\":\"10.1007/s00526-024-02782-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the Cauchy problem of the system of nonlinear Schrödinger equations with derivative nonlinearlity. This system was introduced by Colin and Colin (Differ Int Equ 17:297–330, 2004) as a model of laser-plasma interactions. We study existence of ground state solutions and the global well-posedness of this system by using the variational methods. We also consider the stability of traveling waves for this system. These problems are proposed by Colin–Colin as the open problems. We give a subset of the ground-states set which satisfies the condition of stability. In particular, we prove the stability of the set of traveling waves with small speed for 1-dimension.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00526-024-02782-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02782-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
我们考虑的是具有导数非线性的非线性薛定谔方程系统的柯西问题。该系统由科林和科林(Differ Int Equ 17:297-330, 2004)作为激光等离子体相互作用模型提出。我们利用变分法研究了基态解的存在性和该系统的全局拟合性。我们还考虑了该系统行波的稳定性。这些问题是科林-科林提出的开放问题。我们给出了满足稳定性条件的基态集子集。特别是,我们证明了一维小速度行波集的稳定性。
Variational problems for the system of nonlinear Schrödinger equations with derivative nonlinearities
We consider the Cauchy problem of the system of nonlinear Schrödinger equations with derivative nonlinearlity. This system was introduced by Colin and Colin (Differ Int Equ 17:297–330, 2004) as a model of laser-plasma interactions. We study existence of ground state solutions and the global well-posedness of this system by using the variational methods. We also consider the stability of traveling waves for this system. These problems are proposed by Colin–Colin as the open problems. We give a subset of the ground-states set which satisfies the condition of stability. In particular, we prove the stability of the set of traveling waves with small speed for 1-dimension.