{"title":"揭示高分子量聚乙二醇和超塑化剂化学成分对内固化砂浆的新鲜度、机械性能和微观结构性能的综合影响","authors":"Kastro Kiran V, Dhanya Sathyan","doi":"10.1088/2053-1591/ad5c30","DOIUrl":null,"url":null,"abstract":"The limitations of conventional water curing in tall structures and arid regions necessitate alternative hydration strategies. Use of internal curing agents in high strength concrete can effectively mitigate evaporation and promote enhanced cement hydration in the concrete. However, because the superplasticizer is a required component in high strength concrete, compatibility of the internal curing agent with superplasticizer needs to be investigated. This study investigates the efficacy of internal curing (IC) using polyethylene glycols (PEGs)–PEG 4000 and PEG 6000, in conjunction with superplasticizer from two different families, polycarboxylate ether (PCE) and sulphonated naphthalene formaldehyde (SNF) in mortar mixes. A total of ten mixes were prepared for which samples from each mix were exposed to standard water curing, room curing, and internal curing. The research outcomes reveal a novel application of PEG 6000 and PEG 4000 in conjunction with PCE-based superplasticizers at optimized dosages, presenting a promising avenue for direct implementation in mortar mixes to meet both mechanical and durability prerequisites. Optimized IC mortar mixes displayed comparable or superior mechanical and durability performance to conventionally cured counterparts. This study demonstrates the potential of PEG 6000-PCE combinations as IC agents for improved fresh and hardened properties, offering a viable alternative for challenging construction environments. Further research is warranted to explore the long-term performance and economic feasibility of IC mortars in large-scale projects.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":"5 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the combined influence of higher molecular weight polyethylene glycol and superplasticizer chemistry on fresh, mechanical, and microstructural performance of internally cured mortar\",\"authors\":\"Kastro Kiran V, Dhanya Sathyan\",\"doi\":\"10.1088/2053-1591/ad5c30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The limitations of conventional water curing in tall structures and arid regions necessitate alternative hydration strategies. Use of internal curing agents in high strength concrete can effectively mitigate evaporation and promote enhanced cement hydration in the concrete. However, because the superplasticizer is a required component in high strength concrete, compatibility of the internal curing agent with superplasticizer needs to be investigated. This study investigates the efficacy of internal curing (IC) using polyethylene glycols (PEGs)–PEG 4000 and PEG 6000, in conjunction with superplasticizer from two different families, polycarboxylate ether (PCE) and sulphonated naphthalene formaldehyde (SNF) in mortar mixes. A total of ten mixes were prepared for which samples from each mix were exposed to standard water curing, room curing, and internal curing. The research outcomes reveal a novel application of PEG 6000 and PEG 4000 in conjunction with PCE-based superplasticizers at optimized dosages, presenting a promising avenue for direct implementation in mortar mixes to meet both mechanical and durability prerequisites. Optimized IC mortar mixes displayed comparable or superior mechanical and durability performance to conventionally cured counterparts. This study demonstrates the potential of PEG 6000-PCE combinations as IC agents for improved fresh and hardened properties, offering a viable alternative for challenging construction environments. Further research is warranted to explore the long-term performance and economic feasibility of IC mortars in large-scale projects.\",\"PeriodicalId\":18530,\"journal\":{\"name\":\"Materials Research Express\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Express\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/2053-1591/ad5c30\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Express","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2053-1591/ad5c30","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Unveiling the combined influence of higher molecular weight polyethylene glycol and superplasticizer chemistry on fresh, mechanical, and microstructural performance of internally cured mortar
The limitations of conventional water curing in tall structures and arid regions necessitate alternative hydration strategies. Use of internal curing agents in high strength concrete can effectively mitigate evaporation and promote enhanced cement hydration in the concrete. However, because the superplasticizer is a required component in high strength concrete, compatibility of the internal curing agent with superplasticizer needs to be investigated. This study investigates the efficacy of internal curing (IC) using polyethylene glycols (PEGs)–PEG 4000 and PEG 6000, in conjunction with superplasticizer from two different families, polycarboxylate ether (PCE) and sulphonated naphthalene formaldehyde (SNF) in mortar mixes. A total of ten mixes were prepared for which samples from each mix were exposed to standard water curing, room curing, and internal curing. The research outcomes reveal a novel application of PEG 6000 and PEG 4000 in conjunction with PCE-based superplasticizers at optimized dosages, presenting a promising avenue for direct implementation in mortar mixes to meet both mechanical and durability prerequisites. Optimized IC mortar mixes displayed comparable or superior mechanical and durability performance to conventionally cured counterparts. This study demonstrates the potential of PEG 6000-PCE combinations as IC agents for improved fresh and hardened properties, offering a viable alternative for challenging construction environments. Further research is warranted to explore the long-term performance and economic feasibility of IC mortars in large-scale projects.
期刊介绍:
A broad, rapid peer-review journal publishing new experimental and theoretical research on the design, fabrication, properties and applications of all classes of materials.