{"title":"Teledrive:基于嵌入式人工智能的网真系统","authors":"Snehasis Banerjee, Sayan Paul, Ruddradev Roychoudhury, Abhijan Bhattacharya, Chayan Sarkar, Ashis Sau, Pradip Pramanick, Brojeshwar Bhowmick","doi":"10.1007/s10846-024-02124-0","DOIUrl":null,"url":null,"abstract":"<p>This article presents ‘Teledrive’, a telepresence robotic system with embodied AI features that empowers an operator to navigate the telerobot in any unknown remote place with minimal human intervention. We conceive Teledrive in the context of democratizing remote ‘care-giving’ for elderly citizens as well as for isolated patients, affected by contagious diseases. In particular, this paper focuses on the problem of navigating to a rough target area (like ‘bedroom’ or ‘kitchen’) rather than pre-specified point destinations. This ushers in a unique ‘AreaGoal’ based navigation feature, which has not been explored in depth in the contemporary solutions. Further, we describe an edge computing-based software system built on a WebRTC-based communication framework to realize the aforementioned scheme through an easy-to-use speech-based human-robot interaction. Moreover, to enhance the ease of operation for the remote caregiver, we incorporate a ‘person following’ feature, whereby a robot follows a person on the move in its premises as directed by the operator. Moreover, the system presented is loosely coupled with specific robot hardware, unlike the existing solutions. We have evaluated the efficacy of the proposed system through baseline experiments, user study, and real-life deployment.</p>","PeriodicalId":54794,"journal":{"name":"Journal of Intelligent & Robotic Systems","volume":"37 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Teledrive: An Embodied AI Based Telepresence System\",\"authors\":\"Snehasis Banerjee, Sayan Paul, Ruddradev Roychoudhury, Abhijan Bhattacharya, Chayan Sarkar, Ashis Sau, Pradip Pramanick, Brojeshwar Bhowmick\",\"doi\":\"10.1007/s10846-024-02124-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article presents ‘Teledrive’, a telepresence robotic system with embodied AI features that empowers an operator to navigate the telerobot in any unknown remote place with minimal human intervention. We conceive Teledrive in the context of democratizing remote ‘care-giving’ for elderly citizens as well as for isolated patients, affected by contagious diseases. In particular, this paper focuses on the problem of navigating to a rough target area (like ‘bedroom’ or ‘kitchen’) rather than pre-specified point destinations. This ushers in a unique ‘AreaGoal’ based navigation feature, which has not been explored in depth in the contemporary solutions. Further, we describe an edge computing-based software system built on a WebRTC-based communication framework to realize the aforementioned scheme through an easy-to-use speech-based human-robot interaction. Moreover, to enhance the ease of operation for the remote caregiver, we incorporate a ‘person following’ feature, whereby a robot follows a person on the move in its premises as directed by the operator. Moreover, the system presented is loosely coupled with specific robot hardware, unlike the existing solutions. We have evaluated the efficacy of the proposed system through baseline experiments, user study, and real-life deployment.</p>\",\"PeriodicalId\":54794,\"journal\":{\"name\":\"Journal of Intelligent & Robotic Systems\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent & Robotic Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10846-024-02124-0\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10846-024-02124-0","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Teledrive: An Embodied AI Based Telepresence System
This article presents ‘Teledrive’, a telepresence robotic system with embodied AI features that empowers an operator to navigate the telerobot in any unknown remote place with minimal human intervention. We conceive Teledrive in the context of democratizing remote ‘care-giving’ for elderly citizens as well as for isolated patients, affected by contagious diseases. In particular, this paper focuses on the problem of navigating to a rough target area (like ‘bedroom’ or ‘kitchen’) rather than pre-specified point destinations. This ushers in a unique ‘AreaGoal’ based navigation feature, which has not been explored in depth in the contemporary solutions. Further, we describe an edge computing-based software system built on a WebRTC-based communication framework to realize the aforementioned scheme through an easy-to-use speech-based human-robot interaction. Moreover, to enhance the ease of operation for the remote caregiver, we incorporate a ‘person following’ feature, whereby a robot follows a person on the move in its premises as directed by the operator. Moreover, the system presented is loosely coupled with specific robot hardware, unlike the existing solutions. We have evaluated the efficacy of the proposed system through baseline experiments, user study, and real-life deployment.
期刊介绍:
The Journal of Intelligent and Robotic Systems bridges the gap between theory and practice in all areas of intelligent systems and robotics. It publishes original, peer reviewed contributions from initial concept and theory to prototyping to final product development and commercialization.
On the theoretical side, the journal features papers focusing on intelligent systems engineering, distributed intelligence systems, multi-level systems, intelligent control, multi-robot systems, cooperation and coordination of unmanned vehicle systems, etc.
On the application side, the journal emphasizes autonomous systems, industrial robotic systems, multi-robot systems, aerial vehicles, mobile robot platforms, underwater robots, sensors, sensor-fusion, and sensor-based control. Readers will also find papers on real applications of intelligent and robotic systems (e.g., mechatronics, manufacturing, biomedical, underwater, humanoid, mobile/legged robot and space applications, etc.).