{"title":"下水道网络的温室气体排放:实地评估和同位素特征描述","authors":"Xin Yuan, Xianguo Zhang, Yuqi Yang, Xuan Li, Xin Xing, Jiane Zuo","doi":"10.1007/s11783-024-1879-1","DOIUrl":null,"url":null,"abstract":"<p>Sewer networks play a vital role in sewage collection and transportation, and they are being rapidly expanded. However, the microbial processes occurring within these networks have emerged as significant contributors to greenhouse gas (GHG) emissions. Compared to that from other sectors, our understanding of the magnitude of GHG emissions from sewer networks is currently limited. In this study, we conducted a GHG emission assessment in an independent sewer network located in Beijing, China. The findings revealed annual emissions of 62.3 kg CH<sub>4</sub> and 0.753 kg N<sub>2</sub>O. CH<sub>4</sub> emerged as the primary GHG emitted from sewers, accounting for 87.4% of the total GHG emissions. Interestingly, compared with main pipes, branch pipes were responsible for a larger share of GHG emissions, contributing to 76.7% of the total. A GHG emission factor of 0.26 kg CO<sub>2</sub>-eq/(m·yr) was established to quantify sewer GHG emissions. By examining the isotopic signatures of CO<sub>2</sub>/CH<sub>4</sub> pairs, it was determined that CH<sub>4</sub> production in sewers primarily occurred through acetate fermentation. Additionally, the structure of sewer pipes had a significant impact on GHG levels. This study offers valuable insights into the overall GHG emissions associated with sewer networks and sheds light on the mechanisms driving these emissions.\n</p>","PeriodicalId":12720,"journal":{"name":"Frontiers of Environmental Science & Engineering","volume":"104 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emission of greenhouse gases from sewer networks: field assessment and isotopic characterization\",\"authors\":\"Xin Yuan, Xianguo Zhang, Yuqi Yang, Xuan Li, Xin Xing, Jiane Zuo\",\"doi\":\"10.1007/s11783-024-1879-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sewer networks play a vital role in sewage collection and transportation, and they are being rapidly expanded. However, the microbial processes occurring within these networks have emerged as significant contributors to greenhouse gas (GHG) emissions. Compared to that from other sectors, our understanding of the magnitude of GHG emissions from sewer networks is currently limited. In this study, we conducted a GHG emission assessment in an independent sewer network located in Beijing, China. The findings revealed annual emissions of 62.3 kg CH<sub>4</sub> and 0.753 kg N<sub>2</sub>O. CH<sub>4</sub> emerged as the primary GHG emitted from sewers, accounting for 87.4% of the total GHG emissions. Interestingly, compared with main pipes, branch pipes were responsible for a larger share of GHG emissions, contributing to 76.7% of the total. A GHG emission factor of 0.26 kg CO<sub>2</sub>-eq/(m·yr) was established to quantify sewer GHG emissions. By examining the isotopic signatures of CO<sub>2</sub>/CH<sub>4</sub> pairs, it was determined that CH<sub>4</sub> production in sewers primarily occurred through acetate fermentation. Additionally, the structure of sewer pipes had a significant impact on GHG levels. This study offers valuable insights into the overall GHG emissions associated with sewer networks and sheds light on the mechanisms driving these emissions.\\n</p>\",\"PeriodicalId\":12720,\"journal\":{\"name\":\"Frontiers of Environmental Science & Engineering\",\"volume\":\"104 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Environmental Science & Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s11783-024-1879-1\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Environmental Science & Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11783-024-1879-1","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Emission of greenhouse gases from sewer networks: field assessment and isotopic characterization
Sewer networks play a vital role in sewage collection and transportation, and they are being rapidly expanded. However, the microbial processes occurring within these networks have emerged as significant contributors to greenhouse gas (GHG) emissions. Compared to that from other sectors, our understanding of the magnitude of GHG emissions from sewer networks is currently limited. In this study, we conducted a GHG emission assessment in an independent sewer network located in Beijing, China. The findings revealed annual emissions of 62.3 kg CH4 and 0.753 kg N2O. CH4 emerged as the primary GHG emitted from sewers, accounting for 87.4% of the total GHG emissions. Interestingly, compared with main pipes, branch pipes were responsible for a larger share of GHG emissions, contributing to 76.7% of the total. A GHG emission factor of 0.26 kg CO2-eq/(m·yr) was established to quantify sewer GHG emissions. By examining the isotopic signatures of CO2/CH4 pairs, it was determined that CH4 production in sewers primarily occurred through acetate fermentation. Additionally, the structure of sewer pipes had a significant impact on GHG levels. This study offers valuable insights into the overall GHG emissions associated with sewer networks and sheds light on the mechanisms driving these emissions.
期刊介绍:
Frontiers of Environmental Science & Engineering (FESE) is an international journal for researchers interested in a wide range of environmental disciplines. The journal''s aim is to advance and disseminate knowledge in all main branches of environmental science & engineering. The journal emphasizes papers in developing fields, as well as papers showing the interaction between environmental disciplines and other disciplines.
FESE is a bi-monthly journal. Its peer-reviewed contents consist of a broad blend of reviews, research papers, policy analyses, short communications, and opinions. Nonscheduled “special issue” and "hot topic", including a review article followed by a couple of related research articles, are organized to publish novel contributions and breaking results on all aspects of environmental field.