{"title":"聚丙烯比例对聚对苯二甲酸丁二醇酯/聚丙烯混合物形态和机械性能的影响","authors":"Pham Thi Hong Nga, Nguyen Thanh Tan","doi":"10.1134/S0965545X2460042X","DOIUrl":null,"url":null,"abstract":"<p>Polybutylene terephthalate (PBT) has a strong resistance to abrasion, deformation, and chemical resistance. However, how to further improve the impact toughness of PBT is still an issue that receives the attention of many researchers. This investigation aims to enhance its mechanical properties by mixing it with polypropylene (PP). The tensile strength, impact strength, flexural strength, and microstructure are accorded to ASTM D638, ASTM D256, and ASTM D790. In this analysis, PP was mixed with PBT with different ratios of 95/5, 90/10, 85/15, 80/20, and 75/25. Use injection molding technique to mold specimens for mechanical testing. The results show that the impact strength is 3.7, 6.6, 5.63, 5.2, 5.1, and 4.9 kJ/m<sup>2</sup>, corresponding to 0, 5, 10, 15, 20, and 25% PP. The impact strength of PBT/PP blends is higher than neat PBT. Especially in the 5% PP sample, the impact strength increase can reach the highest level of 80.3% compared to neat PBT. The flexural strength tends to decrease with increasing PP content. After measuring, we get 77.9, 65.6, 62.2, 58.4, 58.2, and 54.0 MPa, corresponding to 0, 5, 10, 15, 20, and 25% PP. The microstructure of the blends showed that spherical PP particles were interwoven into the PBT substrate, but no interphase adhesion was observed. In general, selecting a suitable PBT/PP blend could improve the impact strength while preserving the tensile strength, allowing it to be applied widely.</p>","PeriodicalId":738,"journal":{"name":"Polymer Science, Series A","volume":"66 1","pages":"86 - 94"},"PeriodicalIF":1.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Polypropylene Percentage on Morphological and Mechanical Properties of Polybutylene Terephthalate/Polypropylene Blends\",\"authors\":\"Pham Thi Hong Nga, Nguyen Thanh Tan\",\"doi\":\"10.1134/S0965545X2460042X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Polybutylene terephthalate (PBT) has a strong resistance to abrasion, deformation, and chemical resistance. However, how to further improve the impact toughness of PBT is still an issue that receives the attention of many researchers. This investigation aims to enhance its mechanical properties by mixing it with polypropylene (PP). The tensile strength, impact strength, flexural strength, and microstructure are accorded to ASTM D638, ASTM D256, and ASTM D790. In this analysis, PP was mixed with PBT with different ratios of 95/5, 90/10, 85/15, 80/20, and 75/25. Use injection molding technique to mold specimens for mechanical testing. The results show that the impact strength is 3.7, 6.6, 5.63, 5.2, 5.1, and 4.9 kJ/m<sup>2</sup>, corresponding to 0, 5, 10, 15, 20, and 25% PP. The impact strength of PBT/PP blends is higher than neat PBT. Especially in the 5% PP sample, the impact strength increase can reach the highest level of 80.3% compared to neat PBT. The flexural strength tends to decrease with increasing PP content. After measuring, we get 77.9, 65.6, 62.2, 58.4, 58.2, and 54.0 MPa, corresponding to 0, 5, 10, 15, 20, and 25% PP. The microstructure of the blends showed that spherical PP particles were interwoven into the PBT substrate, but no interphase adhesion was observed. In general, selecting a suitable PBT/PP blend could improve the impact strength while preserving the tensile strength, allowing it to be applied widely.</p>\",\"PeriodicalId\":738,\"journal\":{\"name\":\"Polymer Science, Series A\",\"volume\":\"66 1\",\"pages\":\"86 - 94\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Science, Series A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0965545X2460042X\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Science, Series A","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1134/S0965545X2460042X","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Effect of Polypropylene Percentage on Morphological and Mechanical Properties of Polybutylene Terephthalate/Polypropylene Blends
Polybutylene terephthalate (PBT) has a strong resistance to abrasion, deformation, and chemical resistance. However, how to further improve the impact toughness of PBT is still an issue that receives the attention of many researchers. This investigation aims to enhance its mechanical properties by mixing it with polypropylene (PP). The tensile strength, impact strength, flexural strength, and microstructure are accorded to ASTM D638, ASTM D256, and ASTM D790. In this analysis, PP was mixed with PBT with different ratios of 95/5, 90/10, 85/15, 80/20, and 75/25. Use injection molding technique to mold specimens for mechanical testing. The results show that the impact strength is 3.7, 6.6, 5.63, 5.2, 5.1, and 4.9 kJ/m2, corresponding to 0, 5, 10, 15, 20, and 25% PP. The impact strength of PBT/PP blends is higher than neat PBT. Especially in the 5% PP sample, the impact strength increase can reach the highest level of 80.3% compared to neat PBT. The flexural strength tends to decrease with increasing PP content. After measuring, we get 77.9, 65.6, 62.2, 58.4, 58.2, and 54.0 MPa, corresponding to 0, 5, 10, 15, 20, and 25% PP. The microstructure of the blends showed that spherical PP particles were interwoven into the PBT substrate, but no interphase adhesion was observed. In general, selecting a suitable PBT/PP blend could improve the impact strength while preserving the tensile strength, allowing it to be applied widely.
期刊介绍:
Polymer Science, Series A is a journal published in collaboration with the Russian Academy of Sciences. Series A includes experimental and theoretical papers and reviews devoted to physicochemical studies of the structure and properties of polymers (6 issues a year). All journal series present original papers and reviews covering all fundamental aspects of macromolecular science. Contributions should be of marked novelty and interest for a broad readership. Articles may be written in English or Russian regardless of country and nationality of authors. All manuscripts are peer reviewed. Online submission via Internet to the Series A, B, and C is available at http://polymsci.ru.