{"title":"通过压电传感器/执行器对旋转功能分级锥壳进行行波振动控制","authors":"Shupeng Sun, Changying Zhao, Dengqing Cao","doi":"10.1007/s00419-024-02614-5","DOIUrl":null,"url":null,"abstract":"<div><p>This paper addresses the traveling wave vibration control of rotating functionally graded material (FGM) conical shells via piezoelectric actuator and sensor pairs. Considering the circumferential initial stresses and Coriolis forces induced by rotation, as well as arbitrary boundary conditions, the electromechanically coupled governing equations of the rotating FGM conical shell with piezoelectric patches are established using the Lagrange equation. The model validation is carried out through a comparative analysis with existing literature. Base on the model, the linear–quadratic regulator controller is designed to suppress the traveling wave vibrations of rotating FGM conical shells considering the participation of multi-vibration modes in the dynamic responses. To evaluate the performance of the controller, free and forced vibrations of rotating FGM conical shells with different rotational speeds, material compositions and excitation positions are investigated in detail. Additionally, five typical piezoelectric sensors/actuators distributions are presented and the effects of piezoelectric patch layout on the control efficiency are discussed.</p></div>","PeriodicalId":477,"journal":{"name":"Archive of Applied Mechanics","volume":"94 10","pages":"2769 - 2791"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Traveling wave vibration control of rotating functionally graded conical shells via piezoelectric sensor/actuator pairs\",\"authors\":\"Shupeng Sun, Changying Zhao, Dengqing Cao\",\"doi\":\"10.1007/s00419-024-02614-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper addresses the traveling wave vibration control of rotating functionally graded material (FGM) conical shells via piezoelectric actuator and sensor pairs. Considering the circumferential initial stresses and Coriolis forces induced by rotation, as well as arbitrary boundary conditions, the electromechanically coupled governing equations of the rotating FGM conical shell with piezoelectric patches are established using the Lagrange equation. The model validation is carried out through a comparative analysis with existing literature. Base on the model, the linear–quadratic regulator controller is designed to suppress the traveling wave vibrations of rotating FGM conical shells considering the participation of multi-vibration modes in the dynamic responses. To evaluate the performance of the controller, free and forced vibrations of rotating FGM conical shells with different rotational speeds, material compositions and excitation positions are investigated in detail. Additionally, five typical piezoelectric sensors/actuators distributions are presented and the effects of piezoelectric patch layout on the control efficiency are discussed.</p></div>\",\"PeriodicalId\":477,\"journal\":{\"name\":\"Archive of Applied Mechanics\",\"volume\":\"94 10\",\"pages\":\"2769 - 2791\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive of Applied Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00419-024-02614-5\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive of Applied Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00419-024-02614-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Traveling wave vibration control of rotating functionally graded conical shells via piezoelectric sensor/actuator pairs
This paper addresses the traveling wave vibration control of rotating functionally graded material (FGM) conical shells via piezoelectric actuator and sensor pairs. Considering the circumferential initial stresses and Coriolis forces induced by rotation, as well as arbitrary boundary conditions, the electromechanically coupled governing equations of the rotating FGM conical shell with piezoelectric patches are established using the Lagrange equation. The model validation is carried out through a comparative analysis with existing literature. Base on the model, the linear–quadratic regulator controller is designed to suppress the traveling wave vibrations of rotating FGM conical shells considering the participation of multi-vibration modes in the dynamic responses. To evaluate the performance of the controller, free and forced vibrations of rotating FGM conical shells with different rotational speeds, material compositions and excitation positions are investigated in detail. Additionally, five typical piezoelectric sensors/actuators distributions are presented and the effects of piezoelectric patch layout on the control efficiency are discussed.
期刊介绍:
Archive of Applied Mechanics serves as a platform to communicate original research of scholarly value in all branches of theoretical and applied mechanics, i.e., in solid and fluid mechanics, dynamics and vibrations. It focuses on continuum mechanics in general, structural mechanics, biomechanics, micro- and nano-mechanics as well as hydrodynamics. In particular, the following topics are emphasised: thermodynamics of materials, material modeling, multi-physics, mechanical properties of materials, homogenisation, phase transitions, fracture and damage mechanics, vibration, wave propagation experimental mechanics as well as machine learning techniques in the context of applied mechanics.