Paolo Esposito, Gianluca Antonucci, Gabriele Palozzi, Justyna Fijałkowska
{"title":"改进工作场所决策的认知系统:废物管理领域的探索性研究","authors":"Paolo Esposito, Gianluca Antonucci, Gabriele Palozzi, Justyna Fijałkowska","doi":"10.1108/md-08-2023-1320","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>Artificial intelligence (AI) can help in defining preventive strategies in taking decisions in complex situations. This paper aims to research how workers might deal with intervening AI tools, with the goal of improving their daily working decisions and movements. We contribute to deepening how workers might deal with intervening AI tools aiming at improving their daily working decisions and movements. We investigate these aspects within a field, which is growing in importance due to environmental sustainability issues, i.e. waste management (WM).</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>This manuscript intends to (1) investigate if AI allows better performance in WM by reducing social security costs and by guaranteeing a better continuity of service and (2) examine which structural change is required to operationalize this predictive risk model in the real working context. To achieve these goals, this study developed a qualitative inquiry based on face-to-face interviews with highly qualified experts.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>There is a positive impact of AI schemes in helping to detect critical operating issues. Specifically, AI potentially represents a tool for an alignment of operational behaviours to business strategic goals. Properly elaborated information, obtained through wearable digital infrastructures, allows to take decisions to streamline the work organization, reducing potential loss due to waste of time and/or physical resources.</p><!--/ Abstract__block -->\n<h3>Research limitations/implications</h3>\n<p>Being a qualitative study, and the limited extension of data, it is not possible to guarantee its replication and generalizability. Nevertheless, the prestige of the interviewees makes this research an interesting pilot, on such an emerging theme as AI, thus eliciting stimulating insights from a deepening of information coming from respondents’ knowledge, skills and experience for implementing valuable AI schemes able to an align operational behaviours to business strategic goals.</p><!--/ Abstract__block -->\n<h3>Practical implications</h3>\n<p>The most critical issue is represented by the “quality” of the feedback provided to employees within the business environment, specifically when there is a transfer of knowledge within the organization.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The study focuses on a less investigated context, the role of AI in internal decision-making, particularly, for what regards the interaction between managers and workers as well as the one among workers. Algorithmically managed workers can be seen as the players of summarized results of complex algorithmic analyses offered through simpleminded interfaces, which they can easily use to take good decisions.</p><!--/ Abstract__block -->","PeriodicalId":18046,"journal":{"name":"Management Decision","volume":"5 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cognitive systems for improving decision-making in the workplace: an explorative study within the waste management field\",\"authors\":\"Paolo Esposito, Gianluca Antonucci, Gabriele Palozzi, Justyna Fijałkowska\",\"doi\":\"10.1108/md-08-2023-1320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>Artificial intelligence (AI) can help in defining preventive strategies in taking decisions in complex situations. This paper aims to research how workers might deal with intervening AI tools, with the goal of improving their daily working decisions and movements. We contribute to deepening how workers might deal with intervening AI tools aiming at improving their daily working decisions and movements. We investigate these aspects within a field, which is growing in importance due to environmental sustainability issues, i.e. waste management (WM).</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>This manuscript intends to (1) investigate if AI allows better performance in WM by reducing social security costs and by guaranteeing a better continuity of service and (2) examine which structural change is required to operationalize this predictive risk model in the real working context. To achieve these goals, this study developed a qualitative inquiry based on face-to-face interviews with highly qualified experts.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>There is a positive impact of AI schemes in helping to detect critical operating issues. Specifically, AI potentially represents a tool for an alignment of operational behaviours to business strategic goals. Properly elaborated information, obtained through wearable digital infrastructures, allows to take decisions to streamline the work organization, reducing potential loss due to waste of time and/or physical resources.</p><!--/ Abstract__block -->\\n<h3>Research limitations/implications</h3>\\n<p>Being a qualitative study, and the limited extension of data, it is not possible to guarantee its replication and generalizability. Nevertheless, the prestige of the interviewees makes this research an interesting pilot, on such an emerging theme as AI, thus eliciting stimulating insights from a deepening of information coming from respondents’ knowledge, skills and experience for implementing valuable AI schemes able to an align operational behaviours to business strategic goals.</p><!--/ Abstract__block -->\\n<h3>Practical implications</h3>\\n<p>The most critical issue is represented by the “quality” of the feedback provided to employees within the business environment, specifically when there is a transfer of knowledge within the organization.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>The study focuses on a less investigated context, the role of AI in internal decision-making, particularly, for what regards the interaction between managers and workers as well as the one among workers. Algorithmically managed workers can be seen as the players of summarized results of complex algorithmic analyses offered through simpleminded interfaces, which they can easily use to take good decisions.</p><!--/ Abstract__block -->\",\"PeriodicalId\":18046,\"journal\":{\"name\":\"Management Decision\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Management Decision\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1108/md-08-2023-1320\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Management Decision","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1108/md-08-2023-1320","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS","Score":null,"Total":0}
Cognitive systems for improving decision-making in the workplace: an explorative study within the waste management field
Purpose
Artificial intelligence (AI) can help in defining preventive strategies in taking decisions in complex situations. This paper aims to research how workers might deal with intervening AI tools, with the goal of improving their daily working decisions and movements. We contribute to deepening how workers might deal with intervening AI tools aiming at improving their daily working decisions and movements. We investigate these aspects within a field, which is growing in importance due to environmental sustainability issues, i.e. waste management (WM).
Design/methodology/approach
This manuscript intends to (1) investigate if AI allows better performance in WM by reducing social security costs and by guaranteeing a better continuity of service and (2) examine which structural change is required to operationalize this predictive risk model in the real working context. To achieve these goals, this study developed a qualitative inquiry based on face-to-face interviews with highly qualified experts.
Findings
There is a positive impact of AI schemes in helping to detect critical operating issues. Specifically, AI potentially represents a tool for an alignment of operational behaviours to business strategic goals. Properly elaborated information, obtained through wearable digital infrastructures, allows to take decisions to streamline the work organization, reducing potential loss due to waste of time and/or physical resources.
Research limitations/implications
Being a qualitative study, and the limited extension of data, it is not possible to guarantee its replication and generalizability. Nevertheless, the prestige of the interviewees makes this research an interesting pilot, on such an emerging theme as AI, thus eliciting stimulating insights from a deepening of information coming from respondents’ knowledge, skills and experience for implementing valuable AI schemes able to an align operational behaviours to business strategic goals.
Practical implications
The most critical issue is represented by the “quality” of the feedback provided to employees within the business environment, specifically when there is a transfer of knowledge within the organization.
Originality/value
The study focuses on a less investigated context, the role of AI in internal decision-making, particularly, for what regards the interaction between managers and workers as well as the one among workers. Algorithmically managed workers can be seen as the players of summarized results of complex algorithmic analyses offered through simpleminded interfaces, which they can easily use to take good decisions.
期刊介绍:
■In-depth studies of major issues ■Operations management ■Financial management ■Motivation ■Entrepreneurship ■Problem solving and proactivity ■Serious management argument ■Strategy and policy issues ■Tactics for turning around company crises Management Decision, considered by many to be the best publication in its field, consistently offers thoughtful and provocative insights into current management practice. As such, its high calibre contributions from leading management philosophers and practitioners make it an invaluable resource in the aggressive and demanding trading climate of the Twenty-First Century.