Rafaella Caroline Bernardi, Angélica Mendonça, Ellen Liciane Barbosa Firmino, Luis Fernando Benitez Macorini, Edvaldo Barros, Pollyanna Pereira Santos, Luiz Carlos Santos-Junior, José Eduardo Serrão, William Fernando Antonialli-Junior, Claudia Andréa Lima Cardoso
{"title":"探究布氏外蝠(膜翅目:蝠科)的毒液","authors":"Rafaella Caroline Bernardi, Angélica Mendonça, Ellen Liciane Barbosa Firmino, Luis Fernando Benitez Macorini, Edvaldo Barros, Pollyanna Pereira Santos, Luiz Carlos Santos-Junior, José Eduardo Serrão, William Fernando Antonialli-Junior, Claudia Andréa Lima Cardoso","doi":"10.1007/s00049-024-00407-4","DOIUrl":null,"url":null,"abstract":"<div><p>Ant venom has several functions, including predation, communication, defense against predators, and action against pathogens. There is a scarcity of data about ant venom components that could provide support for understanding the mechanisms of action. The objective here was to identify the amino acids and proteins in the venom of the predatory ant <i>Ectatomma brunneum</i> and to evaluate its antimicrobial activity. The amino acids were analyzed by liquid chromatography, with diode array detection, and were identified using amino acid standards. The two-dimensional (2D) gel electrophoresis fractionation approach was used to identify the proteins, together with MALDI-TOF/TOF mass spectrometry and protein databases. The antimicrobial activity of the venom was evaluated using the minimum inhibitory and minimum microbiocidal concentrations. The venom of <i>E. brunneum</i> contained free amino acids, with a high amount of alanine. The 2D gel analysis showed 104 spots, of which 21 were identified and classified according to biological function, as follows: venom proteins, nontoxic reservoir protection, cellular maintenance proteins, and proteins with unknown function. The venom showed antimicrobial activity, inhibiting the growth of all the bacteria and fungi tested. The results provide new insights into ant venom components and antimicrobial activity.</p></div>","PeriodicalId":515,"journal":{"name":"Chemoecology","volume":"34 3","pages":"125 - 136"},"PeriodicalIF":1.6000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the venom of Ectatomma brunneum Smith (Hymenoptera: Formicidae)\",\"authors\":\"Rafaella Caroline Bernardi, Angélica Mendonça, Ellen Liciane Barbosa Firmino, Luis Fernando Benitez Macorini, Edvaldo Barros, Pollyanna Pereira Santos, Luiz Carlos Santos-Junior, José Eduardo Serrão, William Fernando Antonialli-Junior, Claudia Andréa Lima Cardoso\",\"doi\":\"10.1007/s00049-024-00407-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ant venom has several functions, including predation, communication, defense against predators, and action against pathogens. There is a scarcity of data about ant venom components that could provide support for understanding the mechanisms of action. The objective here was to identify the amino acids and proteins in the venom of the predatory ant <i>Ectatomma brunneum</i> and to evaluate its antimicrobial activity. The amino acids were analyzed by liquid chromatography, with diode array detection, and were identified using amino acid standards. The two-dimensional (2D) gel electrophoresis fractionation approach was used to identify the proteins, together with MALDI-TOF/TOF mass spectrometry and protein databases. The antimicrobial activity of the venom was evaluated using the minimum inhibitory and minimum microbiocidal concentrations. The venom of <i>E. brunneum</i> contained free amino acids, with a high amount of alanine. The 2D gel analysis showed 104 spots, of which 21 were identified and classified according to biological function, as follows: venom proteins, nontoxic reservoir protection, cellular maintenance proteins, and proteins with unknown function. The venom showed antimicrobial activity, inhibiting the growth of all the bacteria and fungi tested. The results provide new insights into ant venom components and antimicrobial activity.</p></div>\",\"PeriodicalId\":515,\"journal\":{\"name\":\"Chemoecology\",\"volume\":\"34 3\",\"pages\":\"125 - 136\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemoecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00049-024-00407-4\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemoecology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s00049-024-00407-4","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Exploring the venom of Ectatomma brunneum Smith (Hymenoptera: Formicidae)
Ant venom has several functions, including predation, communication, defense against predators, and action against pathogens. There is a scarcity of data about ant venom components that could provide support for understanding the mechanisms of action. The objective here was to identify the amino acids and proteins in the venom of the predatory ant Ectatomma brunneum and to evaluate its antimicrobial activity. The amino acids were analyzed by liquid chromatography, with diode array detection, and were identified using amino acid standards. The two-dimensional (2D) gel electrophoresis fractionation approach was used to identify the proteins, together with MALDI-TOF/TOF mass spectrometry and protein databases. The antimicrobial activity of the venom was evaluated using the minimum inhibitory and minimum microbiocidal concentrations. The venom of E. brunneum contained free amino acids, with a high amount of alanine. The 2D gel analysis showed 104 spots, of which 21 were identified and classified according to biological function, as follows: venom proteins, nontoxic reservoir protection, cellular maintenance proteins, and proteins with unknown function. The venom showed antimicrobial activity, inhibiting the growth of all the bacteria and fungi tested. The results provide new insights into ant venom components and antimicrobial activity.
期刊介绍:
It is the aim of Chemoecology to promote and stimulate basic science in the field of chemical ecology by publishing research papers that integrate evolution and/or ecology and chemistry in an attempt to increase our understanding of the biological significance of natural products. Its scopes cover the evolutionary biology, mechanisms and chemistry of biotic interactions and the evolution and synthesis of the underlying natural products. Manuscripts on the evolution and ecology of trophic relationships, intra- and interspecific communication, competition, and other kinds of chemical communication in all types of organismic interactions will be considered suitable for publication. Ecological studies of trophic interactions will be considered also if they are based on the information of the transmission of natural products (e.g. fatty acids) through the food-chain. Chemoecology further publishes papers that relate to the evolution and ecology of interactions mediated by non-volatile compounds (e.g. adhesive secretions). Mechanistic approaches may include the identification, biosynthesis and metabolism of substances that carry information and the elucidation of receptor- and transduction systems using physiological, biochemical and molecular techniques. Papers describing the structure and functional morphology of organs involved in chemical communication will also be considered.