Ji Guangxiong, Liu Bingguo, Luo Guolin, Yuwen Chao, Peng Fang, Gong Siyu, Guo Shenghui, Chen Wang, Hou Keren
{"title":"废塑料热解产生气体的研究进展","authors":"Ji Guangxiong, Liu Bingguo, Luo Guolin, Yuwen Chao, Peng Fang, Gong Siyu, Guo Shenghui, Chen Wang, Hou Keren","doi":"10.1007/s11814-024-00216-z","DOIUrl":null,"url":null,"abstract":"<div><p>Plastic pyrolysis technology, as an efficient and stable path for chemical recycling of waste plastics, alleviates current energy pressures and solves the problem of continuous accumulation of waste plastics in the environment. At present, the vast majority of research on plastic pyrolysis is focused on how to improve the yield and quality of liquid fuels, while there is generally little research on the gases generated by plastic pyrolysis. However, gases such as H<sub>2</sub>, CH<sub>4,</sub> and light hydrocarbons generated during pyrolysis also have high utilization value, and have very considerable application prospects in chemical, aerospace, and metallurgical fields. In addition, compared with the separation difficulties of liquid products, the treatment of gas products is easier and more conducive to subsequent utilization. This article discusses and analyzes the yield and composition of gases generated by plastic in three different pyrolysis methods: direct pyrolysis, catalytic pyrolysis, and microwave pyrolysis. Compared to traditional direct pyrolysis, catalytic pyrolysis and microwave pyrolysis can treat plastic waste more efficiently and energy-efficient, and have higher gas yields. This article also discusses various factors such as temperature that influence the formation of gas products and their importance. Finally, the challenges faced are proposed, aiming to provide reference and direction for future research on improving the yield of gas generated by plastic pyrolysis.</p></div>","PeriodicalId":684,"journal":{"name":"Korean Journal of Chemical Engineering","volume":"41 9","pages":"2477 - 2493"},"PeriodicalIF":2.9000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research Progress on Gas Generation from Waste Plastics Through Pyrolysis\",\"authors\":\"Ji Guangxiong, Liu Bingguo, Luo Guolin, Yuwen Chao, Peng Fang, Gong Siyu, Guo Shenghui, Chen Wang, Hou Keren\",\"doi\":\"10.1007/s11814-024-00216-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Plastic pyrolysis technology, as an efficient and stable path for chemical recycling of waste plastics, alleviates current energy pressures and solves the problem of continuous accumulation of waste plastics in the environment. At present, the vast majority of research on plastic pyrolysis is focused on how to improve the yield and quality of liquid fuels, while there is generally little research on the gases generated by plastic pyrolysis. However, gases such as H<sub>2</sub>, CH<sub>4,</sub> and light hydrocarbons generated during pyrolysis also have high utilization value, and have very considerable application prospects in chemical, aerospace, and metallurgical fields. In addition, compared with the separation difficulties of liquid products, the treatment of gas products is easier and more conducive to subsequent utilization. This article discusses and analyzes the yield and composition of gases generated by plastic in three different pyrolysis methods: direct pyrolysis, catalytic pyrolysis, and microwave pyrolysis. Compared to traditional direct pyrolysis, catalytic pyrolysis and microwave pyrolysis can treat plastic waste more efficiently and energy-efficient, and have higher gas yields. This article also discusses various factors such as temperature that influence the formation of gas products and their importance. Finally, the challenges faced are proposed, aiming to provide reference and direction for future research on improving the yield of gas generated by plastic pyrolysis.</p></div>\",\"PeriodicalId\":684,\"journal\":{\"name\":\"Korean Journal of Chemical Engineering\",\"volume\":\"41 9\",\"pages\":\"2477 - 2493\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korean Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11814-024-00216-z\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11814-024-00216-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Research Progress on Gas Generation from Waste Plastics Through Pyrolysis
Plastic pyrolysis technology, as an efficient and stable path for chemical recycling of waste plastics, alleviates current energy pressures and solves the problem of continuous accumulation of waste plastics in the environment. At present, the vast majority of research on plastic pyrolysis is focused on how to improve the yield and quality of liquid fuels, while there is generally little research on the gases generated by plastic pyrolysis. However, gases such as H2, CH4, and light hydrocarbons generated during pyrolysis also have high utilization value, and have very considerable application prospects in chemical, aerospace, and metallurgical fields. In addition, compared with the separation difficulties of liquid products, the treatment of gas products is easier and more conducive to subsequent utilization. This article discusses and analyzes the yield and composition of gases generated by plastic in three different pyrolysis methods: direct pyrolysis, catalytic pyrolysis, and microwave pyrolysis. Compared to traditional direct pyrolysis, catalytic pyrolysis and microwave pyrolysis can treat plastic waste more efficiently and energy-efficient, and have higher gas yields. This article also discusses various factors such as temperature that influence the formation of gas products and their importance. Finally, the challenges faced are proposed, aiming to provide reference and direction for future research on improving the yield of gas generated by plastic pyrolysis.
期刊介绍:
The Korean Journal of Chemical Engineering provides a global forum for the dissemination of research in chemical engineering. The Journal publishes significant research results obtained in the Asia-Pacific region, and simultaneously introduces recent technical progress made in other areas of the world to this region. Submitted research papers must be of potential industrial significance and specifically concerned with chemical engineering. The editors will give preference to papers having a clearly stated practical scope and applicability in the areas of chemical engineering, and to those where new theoretical concepts are supported by new experimental details. The Journal also regularly publishes featured reviews on emerging and industrially important subjects of chemical engineering as well as selected papers presented at international conferences on the subjects.