Zhao Zhang , Yongjun Wang , Ignaas S.M. Jimidar , Xiaoyan Ye
{"title":"电场驱动致密颗粒介质中的固-液-气相转变","authors":"Zhao Zhang , Yongjun Wang , Ignaas S.M. Jimidar , Xiaoyan Ye","doi":"10.1016/j.ijmultiphaseflow.2024.104907","DOIUrl":null,"url":null,"abstract":"<div><p>The polarization induced by an external electric field significantly influences the contact charge of particles. It can easily cause solid–liquid–gas-like phase transitions in dense granular media, which are the key factors leading to environmental and safety disasters such as sandstorms, volcanic eruptions, and spacecraft emergencies. In this letter, our investigation focused on a densely packed granular system with different thicknesses subjected to bottom excitation and an external electric field. Using the discrete element method (DEM), we proposed conditions for the first- and second-order phase transitions and revealed the mechanism of electrical signal transformation. We presented the physical characteristics of charge and polarization diffusion coefficients for charged particles, and introduced a theoretical Turing model to predict critical phase transitions. Additionally, this phase transition model was extended to the application of electrostatic dust removal, quantitatively predicting the relationship between dust removal efficiency, particle layer thickness, and electric field intensity.</p></div>","PeriodicalId":339,"journal":{"name":"International Journal of Multiphase Flow","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solid–liquid–gas-like phase transition in electric field driven dense granular media\",\"authors\":\"Zhao Zhang , Yongjun Wang , Ignaas S.M. Jimidar , Xiaoyan Ye\",\"doi\":\"10.1016/j.ijmultiphaseflow.2024.104907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The polarization induced by an external electric field significantly influences the contact charge of particles. It can easily cause solid–liquid–gas-like phase transitions in dense granular media, which are the key factors leading to environmental and safety disasters such as sandstorms, volcanic eruptions, and spacecraft emergencies. In this letter, our investigation focused on a densely packed granular system with different thicknesses subjected to bottom excitation and an external electric field. Using the discrete element method (DEM), we proposed conditions for the first- and second-order phase transitions and revealed the mechanism of electrical signal transformation. We presented the physical characteristics of charge and polarization diffusion coefficients for charged particles, and introduced a theoretical Turing model to predict critical phase transitions. Additionally, this phase transition model was extended to the application of electrostatic dust removal, quantitatively predicting the relationship between dust removal efficiency, particle layer thickness, and electric field intensity.</p></div>\",\"PeriodicalId\":339,\"journal\":{\"name\":\"International Journal of Multiphase Flow\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Multiphase Flow\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301932224001848\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Multiphase Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301932224001848","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Solid–liquid–gas-like phase transition in electric field driven dense granular media
The polarization induced by an external electric field significantly influences the contact charge of particles. It can easily cause solid–liquid–gas-like phase transitions in dense granular media, which are the key factors leading to environmental and safety disasters such as sandstorms, volcanic eruptions, and spacecraft emergencies. In this letter, our investigation focused on a densely packed granular system with different thicknesses subjected to bottom excitation and an external electric field. Using the discrete element method (DEM), we proposed conditions for the first- and second-order phase transitions and revealed the mechanism of electrical signal transformation. We presented the physical characteristics of charge and polarization diffusion coefficients for charged particles, and introduced a theoretical Turing model to predict critical phase transitions. Additionally, this phase transition model was extended to the application of electrostatic dust removal, quantitatively predicting the relationship between dust removal efficiency, particle layer thickness, and electric field intensity.
期刊介绍:
The International Journal of Multiphase Flow publishes analytical, numerical and experimental articles of lasting interest. The scope of the journal includes all aspects of mass, momentum and energy exchange phenomena among different phases such as occur in disperse flows, gas–liquid and liquid–liquid flows, flows in porous media, boiling, granular flows and others.
The journal publishes full papers, brief communications and conference announcements.