{"title":"发现新型香豆素三唑基和苯氧苯基三唑基衍生物,靶向淀粉样 beta 聚集介导的氧化应激和神经炎症,增强神经保护能力","authors":"Satsawat Visansirikul, Suthira Yanaso, Yingrak Boondam, Kanjanawadee Prasittisa, Brompoj Prutthiwanasan, Sumet Chongruchiroj and Kittisak Sripha","doi":"10.1039/D4MD00270A","DOIUrl":null,"url":null,"abstract":"<p >This study involved designing, synthesizing, and evaluating the protective potential of compounds on microglial cells (BV-2 cells) and neurons (SH-SY5Y cells) against cell death induced by Aβ<small><sub>1–42</sub></small>. It aimed to identify biologically specific activities associated with anti-Aβ aggregation and understand their role in oxidative stress initiation and modulation of proinflammatory cytokine expression. Actively designed compounds <strong>CE5</strong>, <strong>CA5</strong>, <strong>PE5</strong>, and <strong>PA5</strong> showed protective effects on BV-2 and SH-SY5Y cells, with cell viability ranging from 60.78 ± 2.32% to 75.38 ± 2.75% for BV-2 cells and 87.21% ± 1.76% to 91.55% ± 1.78% for SH-SY5Y cells. The transformation from ester in <strong>CE5</strong> to amide in <strong>CA5</strong> resulted in significant antioxidant properties. Molecular docking studies revealed strong binding of <strong>CE5</strong> to critical Aβ aggregation regions, disrupting both intra- and intermolecular formations. TEM assessment supported <strong>CE5</strong>'s anti-Aβ aggregation efficacy. Structural variations in <strong>PE5</strong> and <strong>PA5</strong> had diverse effects on IL-1β and IL-6, suggesting further specificity studies for Alzheimer's disease. Log <em>P</em> values suggested potential blood–brain barrier permeation for <strong>CE5</strong> and <strong>CA5</strong>, indicating suitability for CNS drug development. <em>In silico</em> ADMET and toxicological screening revealed that <strong>CE5</strong>, <strong>PA5</strong>, and <strong>PE5</strong> have favorable safety profiles, while <strong>CA5</strong> shows a propensity for hepatotoxicity. According to this prediction, coumarin triazolyl derivatives are likely to exhibit mutagenicity. Nevertheless, <strong>CE5</strong> and <strong>CA5</strong> emerge as promising lead compounds for Alzheimer's therapeutic intervention, with further insights expected from subsequent <em>in vivo</em> studies.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 8","pages":" 2745-2765"},"PeriodicalIF":3.5970,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of novel coumarin triazolyl and phenoxyphenyl triazolyl derivatives targeting amyloid beta aggregation-mediated oxidative stress and neuroinflammation for enhanced neuroprotection†\",\"authors\":\"Satsawat Visansirikul, Suthira Yanaso, Yingrak Boondam, Kanjanawadee Prasittisa, Brompoj Prutthiwanasan, Sumet Chongruchiroj and Kittisak Sripha\",\"doi\":\"10.1039/D4MD00270A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study involved designing, synthesizing, and evaluating the protective potential of compounds on microglial cells (BV-2 cells) and neurons (SH-SY5Y cells) against cell death induced by Aβ<small><sub>1–42</sub></small>. It aimed to identify biologically specific activities associated with anti-Aβ aggregation and understand their role in oxidative stress initiation and modulation of proinflammatory cytokine expression. Actively designed compounds <strong>CE5</strong>, <strong>CA5</strong>, <strong>PE5</strong>, and <strong>PA5</strong> showed protective effects on BV-2 and SH-SY5Y cells, with cell viability ranging from 60.78 ± 2.32% to 75.38 ± 2.75% for BV-2 cells and 87.21% ± 1.76% to 91.55% ± 1.78% for SH-SY5Y cells. The transformation from ester in <strong>CE5</strong> to amide in <strong>CA5</strong> resulted in significant antioxidant properties. Molecular docking studies revealed strong binding of <strong>CE5</strong> to critical Aβ aggregation regions, disrupting both intra- and intermolecular formations. TEM assessment supported <strong>CE5</strong>'s anti-Aβ aggregation efficacy. Structural variations in <strong>PE5</strong> and <strong>PA5</strong> had diverse effects on IL-1β and IL-6, suggesting further specificity studies for Alzheimer's disease. Log <em>P</em> values suggested potential blood–brain barrier permeation for <strong>CE5</strong> and <strong>CA5</strong>, indicating suitability for CNS drug development. <em>In silico</em> ADMET and toxicological screening revealed that <strong>CE5</strong>, <strong>PA5</strong>, and <strong>PE5</strong> have favorable safety profiles, while <strong>CA5</strong> shows a propensity for hepatotoxicity. According to this prediction, coumarin triazolyl derivatives are likely to exhibit mutagenicity. Nevertheless, <strong>CE5</strong> and <strong>CA5</strong> emerge as promising lead compounds for Alzheimer's therapeutic intervention, with further insights expected from subsequent <em>in vivo</em> studies.</p>\",\"PeriodicalId\":88,\"journal\":{\"name\":\"MedChemComm\",\"volume\":\" 8\",\"pages\":\" 2745-2765\"},\"PeriodicalIF\":3.5970,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MedChemComm\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/md/d4md00270a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedChemComm","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/md/d4md00270a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Discovery of novel coumarin triazolyl and phenoxyphenyl triazolyl derivatives targeting amyloid beta aggregation-mediated oxidative stress and neuroinflammation for enhanced neuroprotection†
This study involved designing, synthesizing, and evaluating the protective potential of compounds on microglial cells (BV-2 cells) and neurons (SH-SY5Y cells) against cell death induced by Aβ1–42. It aimed to identify biologically specific activities associated with anti-Aβ aggregation and understand their role in oxidative stress initiation and modulation of proinflammatory cytokine expression. Actively designed compounds CE5, CA5, PE5, and PA5 showed protective effects on BV-2 and SH-SY5Y cells, with cell viability ranging from 60.78 ± 2.32% to 75.38 ± 2.75% for BV-2 cells and 87.21% ± 1.76% to 91.55% ± 1.78% for SH-SY5Y cells. The transformation from ester in CE5 to amide in CA5 resulted in significant antioxidant properties. Molecular docking studies revealed strong binding of CE5 to critical Aβ aggregation regions, disrupting both intra- and intermolecular formations. TEM assessment supported CE5's anti-Aβ aggregation efficacy. Structural variations in PE5 and PA5 had diverse effects on IL-1β and IL-6, suggesting further specificity studies for Alzheimer's disease. Log P values suggested potential blood–brain barrier permeation for CE5 and CA5, indicating suitability for CNS drug development. In silico ADMET and toxicological screening revealed that CE5, PA5, and PE5 have favorable safety profiles, while CA5 shows a propensity for hepatotoxicity. According to this prediction, coumarin triazolyl derivatives are likely to exhibit mutagenicity. Nevertheless, CE5 and CA5 emerge as promising lead compounds for Alzheimer's therapeutic intervention, with further insights expected from subsequent in vivo studies.
期刊介绍:
Research and review articles in medicinal chemistry and related drug discovery science; the official journal of the European Federation for Medicinal Chemistry.
In 2020, MedChemComm will change its name to RSC Medicinal Chemistry. Issue 12, 2019 will be the last issue as MedChemComm.