光谱分析在光学和机械装置精密运动诊断中的应用

IF 0.8 4区 地球科学 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
A. V. Kirsanov, I. V. Kuz’min, I. B.Mukhin, V. V.Chernov
{"title":"光谱分析在光学和机械装置精密运动诊断中的应用","authors":"A. V. Kirsanov,&nbsp;I. V. Kuz’min,&nbsp;I. B.Mukhin,&nbsp;V. V.Chernov","doi":"10.1007/s11141-024-10328-5","DOIUrl":null,"url":null,"abstract":"<p>We perform spectral studies of the vibrational phenomena which are caused by imperfection of the optical and mechanical units used in the technological process of applying an antireflection coating to the surfaces of large-scale optical elements. The ways of minimizing the negative effect of the revealed vibrational factors are indicated. In particular, it is shown that a decrease in the amplitudes of the low-frequency spectral components of the motion velocity of the treated elements due to the proposed modification of the optical and mechanical units allows one to create more uniform antireflection coatings. The spectrum of the laser-beam displacements spectrum in the near and far fields is also studied experimentally for various mechanical impacts on the optical and mechanical parts of a fiber laser system. It is established that the vibrations are nonlinear and, at certain impact frequencies, the laser beam in the far field oscillates at frequencies that are multiples of the impact frequency.</p>","PeriodicalId":748,"journal":{"name":"Radiophysics and Quantum Electronics","volume":"66 9","pages":"685 - 692"},"PeriodicalIF":0.8000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Spectral Analysis for Diagnostics of Precision Motion of Optical and Mechanical Units\",\"authors\":\"A. V. Kirsanov,&nbsp;I. V. Kuz’min,&nbsp;I. B.Mukhin,&nbsp;V. V.Chernov\",\"doi\":\"10.1007/s11141-024-10328-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We perform spectral studies of the vibrational phenomena which are caused by imperfection of the optical and mechanical units used in the technological process of applying an antireflection coating to the surfaces of large-scale optical elements. The ways of minimizing the negative effect of the revealed vibrational factors are indicated. In particular, it is shown that a decrease in the amplitudes of the low-frequency spectral components of the motion velocity of the treated elements due to the proposed modification of the optical and mechanical units allows one to create more uniform antireflection coatings. The spectrum of the laser-beam displacements spectrum in the near and far fields is also studied experimentally for various mechanical impacts on the optical and mechanical parts of a fiber laser system. It is established that the vibrations are nonlinear and, at certain impact frequencies, the laser beam in the far field oscillates at frequencies that are multiples of the impact frequency.</p>\",\"PeriodicalId\":748,\"journal\":{\"name\":\"Radiophysics and Quantum Electronics\",\"volume\":\"66 9\",\"pages\":\"685 - 692\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiophysics and Quantum Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11141-024-10328-5\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiophysics and Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11141-024-10328-5","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们对振动现象进行了光谱研究,这些振动现象是由于在大型光学元件表面涂覆抗反射涂层的技术过程中使用的光学和机械装置不完善造成的。研究指出了将所揭示的振动因素的负面影响降至最低的方法。特别说明的是,由于对光学和机械装置进行了拟议的改装,被处理元件运动速度的低频频谱分量的振幅减小,从而可以制造出更均匀的抗反射涂层。此外,还通过实验研究了光纤激光系统的光学和机械部件受到各种机械冲击时,激光束在近场和远场的位移频谱。结果表明,振动是非线性的,在某些冲击频率下,远场激光束的振荡频率是冲击频率的倍数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Spectral Analysis for Diagnostics of Precision Motion of Optical and Mechanical Units

We perform spectral studies of the vibrational phenomena which are caused by imperfection of the optical and mechanical units used in the technological process of applying an antireflection coating to the surfaces of large-scale optical elements. The ways of minimizing the negative effect of the revealed vibrational factors are indicated. In particular, it is shown that a decrease in the amplitudes of the low-frequency spectral components of the motion velocity of the treated elements due to the proposed modification of the optical and mechanical units allows one to create more uniform antireflection coatings. The spectrum of the laser-beam displacements spectrum in the near and far fields is also studied experimentally for various mechanical impacts on the optical and mechanical parts of a fiber laser system. It is established that the vibrations are nonlinear and, at certain impact frequencies, the laser beam in the far field oscillates at frequencies that are multiples of the impact frequency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radiophysics and Quantum Electronics
Radiophysics and Quantum Electronics ENGINEERING, ELECTRICAL & ELECTRONIC-PHYSICS, APPLIED
CiteScore
1.10
自引率
12.50%
发文量
60
审稿时长
6-12 weeks
期刊介绍: Radiophysics and Quantum Electronics contains the most recent and best Russian research on topics such as: Radio astronomy; Plasma astrophysics; Ionospheric, atmospheric and oceanic physics; Radiowave propagation; Quantum radiophysics; Pphysics of oscillations and waves; Physics of plasmas; Statistical radiophysics; Electrodynamics; Vacuum and plasma electronics; Acoustics; Solid-state electronics. Radiophysics and Quantum Electronics is a translation of the Russian journal Izvestiya VUZ. Radiofizika, published by the Radiophysical Research Institute and N.I. Lobachevsky State University at Nizhnii Novgorod, Russia. The Russian volume-year is published in English beginning in April. All articles are peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信