论 PBR 定理的非现实性 "补遗:通过通用反例进行反证

IF 1.2 3区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Marcoen J. T. F. Cabbolet
{"title":"论 PBR 定理的非现实性 \"补遗:通过通用反例进行反证","authors":"Marcoen J. T. F. Cabbolet","doi":"10.1007/s10701-024-00780-8","DOIUrl":null,"url":null,"abstract":"<div><p>The PBR theorem is widely seen as one of the most important no-go theorems in the foundations of quantum mechanics. Recently, in Cabbolet (Found Phys 53(3):64, 2023), it has been argued that there is no reality to the PBR theorem using a pair of bolts as a counterexample. In this addendum we expand on the argument: we disprove the PBR theorem by a generic counterexample, and we put the finger on the precise spot where Pusey, Barrett, and Rudolph have made a tacit assumption that is false.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"54 4","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Addendum to ‘On the Nonreality of the PBR Theorem’: Disproof by Generic Counterexample\",\"authors\":\"Marcoen J. T. F. Cabbolet\",\"doi\":\"10.1007/s10701-024-00780-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The PBR theorem is widely seen as one of the most important no-go theorems in the foundations of quantum mechanics. Recently, in Cabbolet (Found Phys 53(3):64, 2023), it has been argued that there is no reality to the PBR theorem using a pair of bolts as a counterexample. In this addendum we expand on the argument: we disprove the PBR theorem by a generic counterexample, and we put the finger on the precise spot where Pusey, Barrett, and Rudolph have made a tacit assumption that is false.</p></div>\",\"PeriodicalId\":569,\"journal\":{\"name\":\"Foundations of Physics\",\"volume\":\"54 4\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10701-024-00780-8\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10701-024-00780-8","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

PBR 定理被广泛视为量子力学基础中最重要的不成立定理之一。最近,在 Cabbolet (Found Phys 53(3):64, 2023)一文中,有人用一对螺栓作为反例,论证了 PBR 定理并不存在。在本增刊中,我们对这一论点进行了扩展:我们通过一个通用反例推翻了 PBR 定理,并准确地指出了普西、巴雷特和鲁道夫所做的默示假设的错误之处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Addendum to ‘On the Nonreality of the PBR Theorem’: Disproof by Generic Counterexample

Addendum to ‘On the Nonreality of the PBR Theorem’: Disproof by Generic Counterexample

The PBR theorem is widely seen as one of the most important no-go theorems in the foundations of quantum mechanics. Recently, in Cabbolet (Found Phys 53(3):64, 2023), it has been argued that there is no reality to the PBR theorem using a pair of bolts as a counterexample. In this addendum we expand on the argument: we disprove the PBR theorem by a generic counterexample, and we put the finger on the precise spot where Pusey, Barrett, and Rudolph have made a tacit assumption that is false.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Foundations of Physics
Foundations of Physics 物理-物理:综合
CiteScore
2.70
自引率
6.70%
发文量
104
审稿时长
6-12 weeks
期刊介绍: The conceptual foundations of physics have been under constant revision from the outset, and remain so today. Discussion of foundational issues has always been a major source of progress in science, on a par with empirical knowledge and mathematics. Examples include the debates on the nature of space and time involving Newton and later Einstein; on the nature of heat and of energy; on irreversibility and probability due to Boltzmann; on the nature of matter and observation measurement during the early days of quantum theory; on the meaning of renormalisation, and many others. Today, insightful reflection on the conceptual structure utilised in our efforts to understand the physical world is of particular value, given the serious unsolved problems that are likely to demand, once again, modifications of the grammar of our scientific description of the physical world. The quantum properties of gravity, the nature of measurement in quantum mechanics, the primary source of irreversibility, the role of information in physics – all these are examples of questions about which science is still confused and whose solution may well demand more than skilled mathematics and new experiments. Foundations of Physics is a privileged forum for discussing such foundational issues, open to physicists, cosmologists, philosophers and mathematicians. It is devoted to the conceptual bases of the fundamental theories of physics and cosmology, to their logical, methodological, and philosophical premises. The journal welcomes papers on issues such as the foundations of special and general relativity, quantum theory, classical and quantum field theory, quantum gravity, unified theories, thermodynamics, statistical mechanics, cosmology, and similar.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信