关于乘用电动汽车实际驾驶测试必要性的研究

IF 1.5 4区 工程技术 Q3 ENGINEERING, MECHANICAL
Gwangryeol Lee, Jeonghyun Park, Suhan Park, Seung Hyun Yoon
{"title":"关于乘用电动汽车实际驾驶测试必要性的研究","authors":"Gwangryeol Lee, Jeonghyun Park, Suhan Park, Seung Hyun Yoon","doi":"10.1007/s12239-024-00108-5","DOIUrl":null,"url":null,"abstract":"<p>Numerous studies are currently focused on improving the performance and efficiency of electric vehicles (EVs). This research aims to evaluate the necessity for a practical testing methodology to simulate real-world driving scenarios by comparing the driving range measured on a chassis dynamometer with the ranges observed under various actual driving conditions. Tests were conducted on the chassis dynamometer using the multi-cycle test (MCT) mode, employing the urban dynamometer driving schedule (UDDS) and the highway fuel economy driving test (HWFET). Subsequently, we assessed the energy efficiency of three routes compliant with the real-driving emissions-light duty vehicles (RDE-LDV) regulations under real-world driving conditions. Our findings revealed disparities in energy efficiency ranging from 10.8 to 22.9% when driving on the same route and up to 29.3% when driving on different routes. This study highlights the importance of tailoring information provision, such as certification tests, to each country’s environmental context.</p>","PeriodicalId":50338,"journal":{"name":"International Journal of Automotive Technology","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the Necessity of Real-World Driving Tests for Passenger Electric Vehicles\",\"authors\":\"Gwangryeol Lee, Jeonghyun Park, Suhan Park, Seung Hyun Yoon\",\"doi\":\"10.1007/s12239-024-00108-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Numerous studies are currently focused on improving the performance and efficiency of electric vehicles (EVs). This research aims to evaluate the necessity for a practical testing methodology to simulate real-world driving scenarios by comparing the driving range measured on a chassis dynamometer with the ranges observed under various actual driving conditions. Tests were conducted on the chassis dynamometer using the multi-cycle test (MCT) mode, employing the urban dynamometer driving schedule (UDDS) and the highway fuel economy driving test (HWFET). Subsequently, we assessed the energy efficiency of three routes compliant with the real-driving emissions-light duty vehicles (RDE-LDV) regulations under real-world driving conditions. Our findings revealed disparities in energy efficiency ranging from 10.8 to 22.9% when driving on the same route and up to 29.3% when driving on different routes. This study highlights the importance of tailoring information provision, such as certification tests, to each country’s environmental context.</p>\",\"PeriodicalId\":50338,\"journal\":{\"name\":\"International Journal of Automotive Technology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automotive Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12239-024-00108-5\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00108-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

目前,许多研究都在关注如何提高电动汽车(EV)的性能和效率。本研究旨在通过比较底盘测功机测得的行驶里程与各种实际驾驶条件下观察到的行驶里程,评估是否需要一种实用的测试方法来模拟真实世界的驾驶场景。测试在底盘测功机上进行,使用多循环测试(MCT)模式,采用城市测功机驾驶时间表(UDDS)和高速公路燃油经济性驾驶测试(HWFET)。随后,我们评估了符合轻型车辆实际驾驶排放法规(RDE-LDV)的三种路线在实际驾驶条件下的能源效率。我们的研究结果表明,在相同路线上行驶时,能源效率的差异从 10.8% 到 22.9% 不等,而在不同路线上行驶时,差异则高达 29.3%。这项研究强调了根据各国的环境情况提供认证测试等信息的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Study on the Necessity of Real-World Driving Tests for Passenger Electric Vehicles

Study on the Necessity of Real-World Driving Tests for Passenger Electric Vehicles

Numerous studies are currently focused on improving the performance and efficiency of electric vehicles (EVs). This research aims to evaluate the necessity for a practical testing methodology to simulate real-world driving scenarios by comparing the driving range measured on a chassis dynamometer with the ranges observed under various actual driving conditions. Tests were conducted on the chassis dynamometer using the multi-cycle test (MCT) mode, employing the urban dynamometer driving schedule (UDDS) and the highway fuel economy driving test (HWFET). Subsequently, we assessed the energy efficiency of three routes compliant with the real-driving emissions-light duty vehicles (RDE-LDV) regulations under real-world driving conditions. Our findings revealed disparities in energy efficiency ranging from 10.8 to 22.9% when driving on the same route and up to 29.3% when driving on different routes. This study highlights the importance of tailoring information provision, such as certification tests, to each country’s environmental context.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Automotive Technology
International Journal of Automotive Technology 工程技术-工程:机械
CiteScore
3.10
自引率
12.50%
发文量
129
审稿时长
6 months
期刊介绍: The International Journal of Automotive Technology has as its objective the publication and dissemination of original research in all fields of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING. It fosters thus the exchange of ideas among researchers in different parts of the world and also among researchers who emphasize different aspects of the foundations and applications of the field. Standing as it does at the cross-roads of Physics, Chemistry, Mechanics, Engineering Design and Materials Sciences, AUTOMOTIVE TECHNOLOGY is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from thermal engineering, flow analysis, structural analysis, modal analysis, control, vehicular electronics, mechatronis, electro-mechanical engineering, optimum design methods, ITS, and recycling. Interest extends from the basic science to technology applications with analytical, experimental and numerical studies. The emphasis is placed on contributions that appear to be of permanent interest to research workers and engineers in the field. If furthering knowledge in the area of principal concern of the Journal, papers of primary interest to the innovative disciplines of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING may be published. Papers that are merely illustrations of established principles and procedures, even though possibly containing new numerical or experimental data, will generally not be published. When outstanding advances are made in existing areas or when new areas have been developed to a definitive stage, special review articles will be considered by the editors. No length limitations for contributions are set, but only concisely written papers are published. Brief articles are considered on the basis of technical merit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信