{"title":"基于 GWO-LSTM 的柴油发动机氮氧化物排放预测","authors":"Biwei Lu, Jiehui Li","doi":"10.1007/s12239-024-00068-w","DOIUrl":null,"url":null,"abstract":"<p>Diesel engine NOx is the main harmful emission of motor vehicles. Accurate measurement of NOx emission is beneficial to the control of SCR (selective catalytic reduction) urea injection so as to reduce emissions. At present, NOx emission value is mainly obtained by NOx sensor or MAP calibration and these two methods have limitations in practical applications. In this study, PCA (principal component analysis) is used to reduce the dimension of diesel engine operating data of WHTC (the world harmonized transient cycle) bench test, which can make data visualized in three-dimensional space. Then transient diesel engine NOx prediction model is built based on LSTM, and GWO (grey wolf optimizer) is used to optimize the parameters of LSTM. The results showed that <i>R</i><sup>2</sup> (determination coefficients) of the GWO-LSTM is 0.987; In the untrained data set, MAE (mean absolute error), MAPE (mean absolute percentage error) and RMSE (root mean square error) are 18.75 × 10<sup>–6</sup>, 3.23% and 20.29 × 10<sup>–6</sup>, respectively. The same accuracy index are be compared with PSO-BP and static map. It is proved that the GWO-LSTM model can accurately predict the transient NOx emission of diesel engine, and also has good generalization ability with reliability, which provides a reference for software instead of hardware to control diesel engine emission.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NOX Emission Prediction of Diesel Engine Based on GWO-LSTM\",\"authors\":\"Biwei Lu, Jiehui Li\",\"doi\":\"10.1007/s12239-024-00068-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Diesel engine NOx is the main harmful emission of motor vehicles. Accurate measurement of NOx emission is beneficial to the control of SCR (selective catalytic reduction) urea injection so as to reduce emissions. At present, NOx emission value is mainly obtained by NOx sensor or MAP calibration and these two methods have limitations in practical applications. In this study, PCA (principal component analysis) is used to reduce the dimension of diesel engine operating data of WHTC (the world harmonized transient cycle) bench test, which can make data visualized in three-dimensional space. Then transient diesel engine NOx prediction model is built based on LSTM, and GWO (grey wolf optimizer) is used to optimize the parameters of LSTM. The results showed that <i>R</i><sup>2</sup> (determination coefficients) of the GWO-LSTM is 0.987; In the untrained data set, MAE (mean absolute error), MAPE (mean absolute percentage error) and RMSE (root mean square error) are 18.75 × 10<sup>–6</sup>, 3.23% and 20.29 × 10<sup>–6</sup>, respectively. The same accuracy index are be compared with PSO-BP and static map. It is proved that the GWO-LSTM model can accurately predict the transient NOx emission of diesel engine, and also has good generalization ability with reliability, which provides a reference for software instead of hardware to control diesel engine emission.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12239-024-00068-w\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00068-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
NOX Emission Prediction of Diesel Engine Based on GWO-LSTM
Diesel engine NOx is the main harmful emission of motor vehicles. Accurate measurement of NOx emission is beneficial to the control of SCR (selective catalytic reduction) urea injection so as to reduce emissions. At present, NOx emission value is mainly obtained by NOx sensor or MAP calibration and these two methods have limitations in practical applications. In this study, PCA (principal component analysis) is used to reduce the dimension of diesel engine operating data of WHTC (the world harmonized transient cycle) bench test, which can make data visualized in three-dimensional space. Then transient diesel engine NOx prediction model is built based on LSTM, and GWO (grey wolf optimizer) is used to optimize the parameters of LSTM. The results showed that R2 (determination coefficients) of the GWO-LSTM is 0.987; In the untrained data set, MAE (mean absolute error), MAPE (mean absolute percentage error) and RMSE (root mean square error) are 18.75 × 10–6, 3.23% and 20.29 × 10–6, respectively. The same accuracy index are be compared with PSO-BP and static map. It is proved that the GWO-LSTM model can accurately predict the transient NOx emission of diesel engine, and also has good generalization ability with reliability, which provides a reference for software instead of hardware to control diesel engine emission.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.