定制丝胶接枝:比较 PNIPAM/PAMPS 嵌段纳米粒子的一步法和两步法

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Ionut‐Cristian Radu, Derniza‐Elena Cozorici, Erika Blanzeanu, Andreea Vadureanu, Cristina Stavarache, Eugenia Tanasa, Horia Iovu, Catalin Zaharia
{"title":"定制丝胶接枝:比较 PNIPAM/PAMPS 嵌段纳米粒子的一步法和两步法","authors":"Ionut‐Cristian Radu, Derniza‐Elena Cozorici, Erika Blanzeanu, Andreea Vadureanu, Cristina Stavarache, Eugenia Tanasa, Horia Iovu, Catalin Zaharia","doi":"10.1002/mame.202400158","DOIUrl":null,"url":null,"abstract":"Structurally defined, protein‐grafted nanoparticles are widely used in various biomedical applications, particularly as intelligent nanocarriers for drug delivery. The integration of synthetic polymers with natural proteins such as silk sericin enhances the functionality and stability of these nanocarriers, making them suitable for targeted and controlled drug release. In this context, an optimized grafting procedure for silk sericin is presented, employing a protein macroinitiator and atom transfer radical polymerization (ATRP). This study aims to elucidate the significance of the grafting process in tailoring the structure of sericin through the chemistry of synthetic grafts. The grafting procedure uses block copolymers of <jats:italic>N</jats:italic>‐isopropylacrylamide (NIPAM) and 2‐acrylamido‐2‐methylpropanesulfonic acid (AMPS), such as Poly‐(AMPS‐block‐NIPAM)/Poly‐(NIPAM‐block‐AMPS). The procedure employs both one‐step and two‐step synthesis methods to produce a well‐defined, biofunctionalized sericin. Subsequently, sericin‐based nanoparticles are prepared, demonstrating the significance of the optimized procedure. The synthesized products undergo structural analysis using H‐NMR, FTIR‐ATR, XPS, DLS, and zeta potential measurements. In addition, their thermal behavior is assessed using differential scanning calorimetry. To further investigate the prepared nanoparticles, SEM and DLS analyses are conducted. Through synthesis optimization, position and length of each synthetic block is precisely determined, significantly influencing properties of the grafted products and characteristics of the resulting nanoparticles.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailoring Silk Sericin Grafting: Comparing One‐Step and Two‐Step Approaches for PNIPAM/PAMPS Block Nanoparticles\",\"authors\":\"Ionut‐Cristian Radu, Derniza‐Elena Cozorici, Erika Blanzeanu, Andreea Vadureanu, Cristina Stavarache, Eugenia Tanasa, Horia Iovu, Catalin Zaharia\",\"doi\":\"10.1002/mame.202400158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Structurally defined, protein‐grafted nanoparticles are widely used in various biomedical applications, particularly as intelligent nanocarriers for drug delivery. The integration of synthetic polymers with natural proteins such as silk sericin enhances the functionality and stability of these nanocarriers, making them suitable for targeted and controlled drug release. In this context, an optimized grafting procedure for silk sericin is presented, employing a protein macroinitiator and atom transfer radical polymerization (ATRP). This study aims to elucidate the significance of the grafting process in tailoring the structure of sericin through the chemistry of synthetic grafts. The grafting procedure uses block copolymers of <jats:italic>N</jats:italic>‐isopropylacrylamide (NIPAM) and 2‐acrylamido‐2‐methylpropanesulfonic acid (AMPS), such as Poly‐(AMPS‐block‐NIPAM)/Poly‐(NIPAM‐block‐AMPS). The procedure employs both one‐step and two‐step synthesis methods to produce a well‐defined, biofunctionalized sericin. Subsequently, sericin‐based nanoparticles are prepared, demonstrating the significance of the optimized procedure. The synthesized products undergo structural analysis using H‐NMR, FTIR‐ATR, XPS, DLS, and zeta potential measurements. In addition, their thermal behavior is assessed using differential scanning calorimetry. To further investigate the prepared nanoparticles, SEM and DLS analyses are conducted. Through synthesis optimization, position and length of each synthetic block is precisely determined, significantly influencing properties of the grafted products and characteristics of the resulting nanoparticles.\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/mame.202400158\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/mame.202400158","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

结构明确的蛋白质接枝纳米粒子被广泛应用于各种生物医学领域,尤其是作为智能纳米载体用于药物输送。合成聚合物与丝胶蛋白等天然蛋白质的结合增强了这些纳米载体的功能性和稳定性,使其适用于靶向和可控药物释放。在此背景下,本文介绍了丝胶蛋白的优化接枝程序,该程序采用了蛋白质大引发剂和原子转移自由基聚合(ATRP)技术。这项研究旨在通过合成接枝化学,阐明接枝过程在定制丝胶结构方面的重要意义。接枝过程使用的是 N-异丙基丙烯酰胺(NIPAM)和 2-丙烯酰胺基-2-甲基丙磺酸(AMPS)嵌段共聚物,如 Poly-(AMPS-block-NIPAM)/Poly-(NIPAM-block-AMPS)。该程序采用一步法和两步法合成方法制备出定义明确的生物功能化丝胶蛋白。随后,制备了基于丝胶蛋白的纳米颗粒,证明了优化程序的重要性。利用 H-NMR、FTIR-ATR、XPS、DLS 和 zeta 电位测量法对合成产品进行了结构分析。此外,还使用差示扫描量热法对其热行为进行了评估。为了进一步研究制备的纳米粒子,还进行了扫描电镜和 DLS 分析。通过合成优化,精确确定了每个合成嵌段的位置和长度,这对接枝产物的性质和所制备纳米粒子的特性产生了重大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tailoring Silk Sericin Grafting: Comparing One‐Step and Two‐Step Approaches for PNIPAM/PAMPS Block Nanoparticles
Structurally defined, protein‐grafted nanoparticles are widely used in various biomedical applications, particularly as intelligent nanocarriers for drug delivery. The integration of synthetic polymers with natural proteins such as silk sericin enhances the functionality and stability of these nanocarriers, making them suitable for targeted and controlled drug release. In this context, an optimized grafting procedure for silk sericin is presented, employing a protein macroinitiator and atom transfer radical polymerization (ATRP). This study aims to elucidate the significance of the grafting process in tailoring the structure of sericin through the chemistry of synthetic grafts. The grafting procedure uses block copolymers of N‐isopropylacrylamide (NIPAM) and 2‐acrylamido‐2‐methylpropanesulfonic acid (AMPS), such as Poly‐(AMPS‐block‐NIPAM)/Poly‐(NIPAM‐block‐AMPS). The procedure employs both one‐step and two‐step synthesis methods to produce a well‐defined, biofunctionalized sericin. Subsequently, sericin‐based nanoparticles are prepared, demonstrating the significance of the optimized procedure. The synthesized products undergo structural analysis using H‐NMR, FTIR‐ATR, XPS, DLS, and zeta potential measurements. In addition, their thermal behavior is assessed using differential scanning calorimetry. To further investigate the prepared nanoparticles, SEM and DLS analyses are conducted. Through synthesis optimization, position and length of each synthetic block is precisely determined, significantly influencing properties of the grafted products and characteristics of the resulting nanoparticles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信