Haichuan Li , Jie Wang , Yaxiao Liu, Junran Chen, Chaoqun Wang, Yunfeng Hu, Kailei Hu
{"title":"含枸杞多糖的可生物降解马铃薯淀粉膜的生产及其理化性质研究","authors":"Haichuan Li , Jie Wang , Yaxiao Liu, Junran Chen, Chaoqun Wang, Yunfeng Hu, Kailei Hu","doi":"10.1016/j.fpsl.2024.101320","DOIUrl":null,"url":null,"abstract":"<div><p>Biodegradable films based on potato starch (POS) modified with <em>Lycium barbarum</em> polysaccharide (LBP) were prepared. The basic characteristics of the films, including thickness, opacity, swelling degree, color and water vapor permeability (WVP), were investigated. Rheometry, spectroscopy and textural analysis techniques were applied to determine the micro- and macro-physicochemical properties of the films. The inclusion of LBP in films led to a substantial reduction in thickness (from 0.16 to 0.11 mm), moisture content (from 15.16 % to 13.72 %), and WVP (from 4.03 ×10<sup>−4</sup> to 2.69 ×10<sup>−4</sup> g·mm·cm<sup>−2</sup>·d<sup>−1</sup>·kPa<sup>−1</sup>). The film color indices a* and b* (i.e., red and yellow) increased as the amount of added LBP was increased. No grease penetration occurred in films prepared using 0.4 or 0.6 (%, w/v) LBP, and they displayed excellent UV resistance. Incorporation of LBP significantly improved the thermal stability of potato starch films, and inhibited the swelling of film in alkaline solution. The addition of 0.4 or 0.6 (%, w/v) LBP increased the biocompatibility of films and resulted in a high tensile strength (TS) and elongation at break (EAB). Compost burial tests showed that incorporation of LBP did not disrupt the excellent degradation properties of starch films. These results prove the potential of LBP as a green modification material to improve the properties of potato starch-based films.</p></div>","PeriodicalId":12377,"journal":{"name":"Food Packaging and Shelf Life","volume":"44 ","pages":"Article 101320"},"PeriodicalIF":8.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Production of biodegradable potato starch films containing Lycium barbarum polysaccharide and investigation of their physicochemical properties\",\"authors\":\"Haichuan Li , Jie Wang , Yaxiao Liu, Junran Chen, Chaoqun Wang, Yunfeng Hu, Kailei Hu\",\"doi\":\"10.1016/j.fpsl.2024.101320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Biodegradable films based on potato starch (POS) modified with <em>Lycium barbarum</em> polysaccharide (LBP) were prepared. The basic characteristics of the films, including thickness, opacity, swelling degree, color and water vapor permeability (WVP), were investigated. Rheometry, spectroscopy and textural analysis techniques were applied to determine the micro- and macro-physicochemical properties of the films. The inclusion of LBP in films led to a substantial reduction in thickness (from 0.16 to 0.11 mm), moisture content (from 15.16 % to 13.72 %), and WVP (from 4.03 ×10<sup>−4</sup> to 2.69 ×10<sup>−4</sup> g·mm·cm<sup>−2</sup>·d<sup>−1</sup>·kPa<sup>−1</sup>). The film color indices a* and b* (i.e., red and yellow) increased as the amount of added LBP was increased. No grease penetration occurred in films prepared using 0.4 or 0.6 (%, w/v) LBP, and they displayed excellent UV resistance. Incorporation of LBP significantly improved the thermal stability of potato starch films, and inhibited the swelling of film in alkaline solution. The addition of 0.4 or 0.6 (%, w/v) LBP increased the biocompatibility of films and resulted in a high tensile strength (TS) and elongation at break (EAB). Compost burial tests showed that incorporation of LBP did not disrupt the excellent degradation properties of starch films. These results prove the potential of LBP as a green modification material to improve the properties of potato starch-based films.</p></div>\",\"PeriodicalId\":12377,\"journal\":{\"name\":\"Food Packaging and Shelf Life\",\"volume\":\"44 \",\"pages\":\"Article 101320\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Packaging and Shelf Life\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214289424000851\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Packaging and Shelf Life","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214289424000851","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Production of biodegradable potato starch films containing Lycium barbarum polysaccharide and investigation of their physicochemical properties
Biodegradable films based on potato starch (POS) modified with Lycium barbarum polysaccharide (LBP) were prepared. The basic characteristics of the films, including thickness, opacity, swelling degree, color and water vapor permeability (WVP), were investigated. Rheometry, spectroscopy and textural analysis techniques were applied to determine the micro- and macro-physicochemical properties of the films. The inclusion of LBP in films led to a substantial reduction in thickness (from 0.16 to 0.11 mm), moisture content (from 15.16 % to 13.72 %), and WVP (from 4.03 ×10−4 to 2.69 ×10−4 g·mm·cm−2·d−1·kPa−1). The film color indices a* and b* (i.e., red and yellow) increased as the amount of added LBP was increased. No grease penetration occurred in films prepared using 0.4 or 0.6 (%, w/v) LBP, and they displayed excellent UV resistance. Incorporation of LBP significantly improved the thermal stability of potato starch films, and inhibited the swelling of film in alkaline solution. The addition of 0.4 or 0.6 (%, w/v) LBP increased the biocompatibility of films and resulted in a high tensile strength (TS) and elongation at break (EAB). Compost burial tests showed that incorporation of LBP did not disrupt the excellent degradation properties of starch films. These results prove the potential of LBP as a green modification material to improve the properties of potato starch-based films.
期刊介绍:
Food packaging is crucial for preserving food integrity throughout the distribution chain. It safeguards against contamination by physical, chemical, and biological agents, ensuring the safety and quality of processed foods. The evolution of novel food packaging, including modified atmosphere and active packaging, has extended shelf life, enhancing convenience for consumers. Shelf life, the duration a perishable item remains suitable for sale, use, or consumption, is intricately linked with food packaging, emphasizing its role in maintaining product quality and safety.