针对对流主导的二阶椭圆问题的无罚金且基本无稳定的 DG 方法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Huoyuan Duan, Junhua Ma
{"title":"针对对流主导的二阶椭圆问题的无罚金且基本无稳定的 DG 方法","authors":"Huoyuan Duan, Junhua Ma","doi":"10.1007/s10915-024-02615-0","DOIUrl":null,"url":null,"abstract":"<p>A new discontinuous Galerkin (DG) method is proposed and analyzed for general second-order elliptic problems. It features that local <span>\\(L^2\\)</span> projections are used to reconstruct the diffusion term and the convection term and that it does not need any penalty and even does not need any stabilization in the formulation. The Babus̆ka inf-sup stability is proven. The error estimates are established. More importantly, the new DG method can hold the SUPG-type stability for the convection; the SUPG-type optimal error estimates <span>\\({{\\mathcal {O}}}(h^{\\ell +1/2})\\)</span> is obtained for the problem with a dominating convection for the <span>\\(\\ell \\)</span>-th order (<span>\\(\\ell \\ge 0\\)</span>) discontinuous element. Numerical results are provided.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Penalty-Free and Essentially Stabilization-Free DG Method for Convection-Dominated Second-Order Elliptic Problems\",\"authors\":\"Huoyuan Duan, Junhua Ma\",\"doi\":\"10.1007/s10915-024-02615-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A new discontinuous Galerkin (DG) method is proposed and analyzed for general second-order elliptic problems. It features that local <span>\\\\(L^2\\\\)</span> projections are used to reconstruct the diffusion term and the convection term and that it does not need any penalty and even does not need any stabilization in the formulation. The Babus̆ka inf-sup stability is proven. The error estimates are established. More importantly, the new DG method can hold the SUPG-type stability for the convection; the SUPG-type optimal error estimates <span>\\\\({{\\\\mathcal {O}}}(h^{\\\\ell +1/2})\\\\)</span> is obtained for the problem with a dominating convection for the <span>\\\\(\\\\ell \\\\)</span>-th order (<span>\\\\(\\\\ell \\\\ge 0\\\\)</span>) discontinuous element. Numerical results are provided.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10915-024-02615-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02615-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

针对一般二阶椭圆问题,提出并分析了一种新的非连续伽勒金(DG)方法。它的特点是使用局部(L^2)投影来重建扩散项和对流项,并且不需要任何惩罚,甚至不需要任何稳定公式。证明了 Babus̆ka inf-sup 稳定性。建立了误差估计。更重要的是,新的DG方法可以保持对流的SUPG型稳定性;对于(\ell\)-th order (\(\ell\ge 0\))不连续元素的支配对流问题,得到了SUPG型最优误差估计值(({{mathcal {O}}(h^\{ell +1/2}) \)。提供了数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Penalty-Free and Essentially Stabilization-Free DG Method for Convection-Dominated Second-Order Elliptic Problems

A Penalty-Free and Essentially Stabilization-Free DG Method for Convection-Dominated Second-Order Elliptic Problems

A new discontinuous Galerkin (DG) method is proposed and analyzed for general second-order elliptic problems. It features that local \(L^2\) projections are used to reconstruct the diffusion term and the convection term and that it does not need any penalty and even does not need any stabilization in the formulation. The Babus̆ka inf-sup stability is proven. The error estimates are established. More importantly, the new DG method can hold the SUPG-type stability for the convection; the SUPG-type optimal error estimates \({{\mathcal {O}}}(h^{\ell +1/2})\) is obtained for the problem with a dominating convection for the \(\ell \)-th order (\(\ell \ge 0\)) discontinuous element. Numerical results are provided.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信