Bishal Bhandari, Justin C Bonner, Robert T Piper, Julia W P Hsu
{"title":"透明导电电极和空穴传输层对 PET 基底上制造的 MAPbI3 太阳能电池性能的影响","authors":"Bishal Bhandari, Justin C Bonner, Robert T Piper, Julia W P Hsu","doi":"10.1088/2058-8585/ad5d01","DOIUrl":null,"url":null,"abstract":"This study investigates how the performance of perovskite solar cells (PSCs) made on polyethylene terephthalate (PET) substrates depends on transparent conducting electrodes (TCEs) and hole transport layers (HTLs). We fabricated PSCs using commercially available PET/TCEs and compared their performance with PSCs manufactured on Glass/indium tin oxide (ITO) substrates. Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) with varying levels of acidity and NiO nanoparticles were used as HTLs. The current density-voltage characteristics of PSCs made on PET/TCEs were found to be significantly lower when highly acidic PEDOT:PSS was used as the HTL. However, this was not observed for PSCs made on Glass/ITO. To investigate the interaction between HTL and TCE, atomic force microscopy was carried out after dipping the TCEs in PEDOT:PSS solutions of different acidity. X-ray photoelectron spectroscopy measurements further revealed differences in the chemical composition between ITO film on PET vs. on glass. Our results indicate that the performance of PSCs depends both on the TCE substrates and HTLs, which can be explained by their chemical interaction.","PeriodicalId":51335,"journal":{"name":"Flexible and Printed Electronics","volume":"86 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of transparent conducting electrodes and hole transport layers on the performance of MAPbI3 solar cells fabricated on PET substrates\",\"authors\":\"Bishal Bhandari, Justin C Bonner, Robert T Piper, Julia W P Hsu\",\"doi\":\"10.1088/2058-8585/ad5d01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates how the performance of perovskite solar cells (PSCs) made on polyethylene terephthalate (PET) substrates depends on transparent conducting electrodes (TCEs) and hole transport layers (HTLs). We fabricated PSCs using commercially available PET/TCEs and compared their performance with PSCs manufactured on Glass/indium tin oxide (ITO) substrates. Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) with varying levels of acidity and NiO nanoparticles were used as HTLs. The current density-voltage characteristics of PSCs made on PET/TCEs were found to be significantly lower when highly acidic PEDOT:PSS was used as the HTL. However, this was not observed for PSCs made on Glass/ITO. To investigate the interaction between HTL and TCE, atomic force microscopy was carried out after dipping the TCEs in PEDOT:PSS solutions of different acidity. X-ray photoelectron spectroscopy measurements further revealed differences in the chemical composition between ITO film on PET vs. on glass. Our results indicate that the performance of PSCs depends both on the TCE substrates and HTLs, which can be explained by their chemical interaction.\",\"PeriodicalId\":51335,\"journal\":{\"name\":\"Flexible and Printed Electronics\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flexible and Printed Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-8585/ad5d01\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flexible and Printed Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2058-8585/ad5d01","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Effects of transparent conducting electrodes and hole transport layers on the performance of MAPbI3 solar cells fabricated on PET substrates
This study investigates how the performance of perovskite solar cells (PSCs) made on polyethylene terephthalate (PET) substrates depends on transparent conducting electrodes (TCEs) and hole transport layers (HTLs). We fabricated PSCs using commercially available PET/TCEs and compared their performance with PSCs manufactured on Glass/indium tin oxide (ITO) substrates. Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) with varying levels of acidity and NiO nanoparticles were used as HTLs. The current density-voltage characteristics of PSCs made on PET/TCEs were found to be significantly lower when highly acidic PEDOT:PSS was used as the HTL. However, this was not observed for PSCs made on Glass/ITO. To investigate the interaction between HTL and TCE, atomic force microscopy was carried out after dipping the TCEs in PEDOT:PSS solutions of different acidity. X-ray photoelectron spectroscopy measurements further revealed differences in the chemical composition between ITO film on PET vs. on glass. Our results indicate that the performance of PSCs depends both on the TCE substrates and HTLs, which can be explained by their chemical interaction.
期刊介绍:
Flexible and Printed Electronics is a multidisciplinary journal publishing cutting edge research articles on electronics that can be either flexible, plastic, stretchable, conformable or printed. Research related to electronic materials, manufacturing techniques, components or systems which meets any one (or more) of the above criteria is suitable for publication in the journal. Subjects included in the journal range from flexible materials and printing techniques, design or modelling of electrical systems and components, advanced fabrication methods and bioelectronics, to the properties of devices and end user applications.