Zichen Zhu , Xing Du , Bingchen Liang , Linfeng Wang , Yupeng Song , Ping Li , Yaoshen Fan , Shuhua Bian , Yongzhi Wang , Yongqiang Zhang , Bing Li
{"title":"在沉积物迁移模型中模拟液化诱发的再悬浮通量","authors":"Zichen Zhu , Xing Du , Bingchen Liang , Linfeng Wang , Yupeng Song , Ping Li , Yaoshen Fan , Shuhua Bian , Yongzhi Wang , Yongqiang Zhang , Bing Li","doi":"10.1016/j.watres.2024.122057","DOIUrl":null,"url":null,"abstract":"<div><p>Wave-induced liquefaction is a geological hazard under the action of cyclic wave load on seabed. Liquefaction influences the suspended sediment concentration (SSC), which is essential for sediment dynamics and marine water quality. Till now, the identification of liquefaction state and the effect of liquefaction on SSC have not been sufficiently accounted for in the sediment model. In this study, we introduced a method for simulating the liquefaction-induced resuspension flux into an ocean model. We then simulated a storm north of the Yellow River Delta, China, and validated the results using observational data, including significant wave heights, water levels, excess pore water pressures, and SSCs. The liquefaction areas were mainly distributed in coastal zones with water depths less than 12 m, and the simulated maximum potential soil liquefaction depth was 1.39 m. The liquefaction-induced SSC was separated from the total SSC of both liquefaction- and shear-induced SSCs by the model, yielding a maximum liquefaction-induced SSC of 1.07 kg·m<sup>−3</sup>. The simulated maximum proportion of liquefaction-induced SSC was 26.2% in regions with water depths of 6–12 m, with a maximum significant wave height of 3.4 m along the 12 m depth contour. The erosion zone at water depths of 8–12 m was reproduced by the model. Within 52.5 h of the storm, the maximum erosion thickness along the 10 m depth contour was enhanced by 33.9%. The model is applicable in the prediction of liquefaction, and provides a new method to simulate the SSC and seabed erosion influenced by liquefaction. Model results show that liquefaction has significant effects on SSC and seabed erosion in the coastal area with depth of 6–12 m. The validity of this method is confined to certain conditions, including a fully saturated seabed exhibiting homogeneity and isotropic properties, small liquefaction depth, residual liquefaction dominating the development of pore pressures, no influence by structures, and the sediment composed of silt and mud that experiences frequent wave-induced liquefaction.</p></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":null,"pages":null},"PeriodicalIF":11.4000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulating liquefaction-induced resuspension flux in a sediment transport model\",\"authors\":\"Zichen Zhu , Xing Du , Bingchen Liang , Linfeng Wang , Yupeng Song , Ping Li , Yaoshen Fan , Shuhua Bian , Yongzhi Wang , Yongqiang Zhang , Bing Li\",\"doi\":\"10.1016/j.watres.2024.122057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Wave-induced liquefaction is a geological hazard under the action of cyclic wave load on seabed. Liquefaction influences the suspended sediment concentration (SSC), which is essential for sediment dynamics and marine water quality. Till now, the identification of liquefaction state and the effect of liquefaction on SSC have not been sufficiently accounted for in the sediment model. In this study, we introduced a method for simulating the liquefaction-induced resuspension flux into an ocean model. We then simulated a storm north of the Yellow River Delta, China, and validated the results using observational data, including significant wave heights, water levels, excess pore water pressures, and SSCs. The liquefaction areas were mainly distributed in coastal zones with water depths less than 12 m, and the simulated maximum potential soil liquefaction depth was 1.39 m. The liquefaction-induced SSC was separated from the total SSC of both liquefaction- and shear-induced SSCs by the model, yielding a maximum liquefaction-induced SSC of 1.07 kg·m<sup>−3</sup>. The simulated maximum proportion of liquefaction-induced SSC was 26.2% in regions with water depths of 6–12 m, with a maximum significant wave height of 3.4 m along the 12 m depth contour. The erosion zone at water depths of 8–12 m was reproduced by the model. Within 52.5 h of the storm, the maximum erosion thickness along the 10 m depth contour was enhanced by 33.9%. The model is applicable in the prediction of liquefaction, and provides a new method to simulate the SSC and seabed erosion influenced by liquefaction. Model results show that liquefaction has significant effects on SSC and seabed erosion in the coastal area with depth of 6–12 m. The validity of this method is confined to certain conditions, including a fully saturated seabed exhibiting homogeneity and isotropic properties, small liquefaction depth, residual liquefaction dominating the development of pore pressures, no influence by structures, and the sediment composed of silt and mud that experiences frequent wave-induced liquefaction.</p></div>\",\"PeriodicalId\":443,\"journal\":{\"name\":\"Water Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0043135424009576\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135424009576","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Simulating liquefaction-induced resuspension flux in a sediment transport model
Wave-induced liquefaction is a geological hazard under the action of cyclic wave load on seabed. Liquefaction influences the suspended sediment concentration (SSC), which is essential for sediment dynamics and marine water quality. Till now, the identification of liquefaction state and the effect of liquefaction on SSC have not been sufficiently accounted for in the sediment model. In this study, we introduced a method for simulating the liquefaction-induced resuspension flux into an ocean model. We then simulated a storm north of the Yellow River Delta, China, and validated the results using observational data, including significant wave heights, water levels, excess pore water pressures, and SSCs. The liquefaction areas were mainly distributed in coastal zones with water depths less than 12 m, and the simulated maximum potential soil liquefaction depth was 1.39 m. The liquefaction-induced SSC was separated from the total SSC of both liquefaction- and shear-induced SSCs by the model, yielding a maximum liquefaction-induced SSC of 1.07 kg·m−3. The simulated maximum proportion of liquefaction-induced SSC was 26.2% in regions with water depths of 6–12 m, with a maximum significant wave height of 3.4 m along the 12 m depth contour. The erosion zone at water depths of 8–12 m was reproduced by the model. Within 52.5 h of the storm, the maximum erosion thickness along the 10 m depth contour was enhanced by 33.9%. The model is applicable in the prediction of liquefaction, and provides a new method to simulate the SSC and seabed erosion influenced by liquefaction. Model results show that liquefaction has significant effects on SSC and seabed erosion in the coastal area with depth of 6–12 m. The validity of this method is confined to certain conditions, including a fully saturated seabed exhibiting homogeneity and isotropic properties, small liquefaction depth, residual liquefaction dominating the development of pore pressures, no influence by structures, and the sediment composed of silt and mud that experiences frequent wave-induced liquefaction.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.